Loading…
Design of Axial Blood Pumps for Patients With Dysfunctional Fontan Physiology: Computational Studies and Performance Testing
Limited treatment options for patients having dysfunctional single ventricle physiology motivate the necessity for alternative therapeutic options. To address this unmet need, we are developing a collapsible axial flow blood pump. This study investigated the impact of geometric simplicity to facilit...
Saved in:
Published in: | Artificial organs 2015-01, Vol.39 (1), p.34-42 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 42 |
container_issue | 1 |
container_start_page | 34 |
container_title | Artificial organs |
container_volume | 39 |
creator | Kafagy, Dhyaa H. Dwyer, Thomas W. McKenna, Kelli L. Mulles, Jean P. Chopski, Steven G. Moskowitz, William B. Throckmorton, Amy L. |
description | Limited treatment options for patients having dysfunctional single ventricle physiology motivate the necessity for alternative therapeutic options. To address this unmet need, we are developing a collapsible axial flow blood pump. This study investigated the impact of geometric simplicity to facilitate percutaneous placement and maintain optimal performance. Three new pump designs were numerically evaluated. A transient simulation explored the impact of respiration on blood flow conditions over the entire respiratory cycle. Prototype testing of the top performing pump design was completed. The top performing Rec design generated the highest pressure rise range of 2–38 mm Hg for flow rates of 1–4 L/min at 4000–7000 RPM, exceeding the performance of the other two configurations by more than 26%. The blood damage indices for the new pump designs were determined to be below 0.5% and predicted hemolysis levels remained low at less than 7 × 10−5 g/100 L. Prototype testing of the Rec design confirmed numerical predictions to within an average of approximately 22%. These findings demonstrate that the pumps are reasonably versatile in operational ability, meet pressure‐flow requirements to support Fontan patients, and are expected to have low levels of blood trauma. |
doi_str_mv | 10.1111/aor.12443 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652416956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652416956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3173-2e2be0daae6fa4c7c05c6bd5785677b22f02f60bb3046bcdca22805fb47a36bb3</originalsourceid><addsrcrecordid>eNpdkU9P2zAYxq1p01pgB74AsrTLLqG24z8tt1KgTKoggqLuZjmJUwyJ3cWOIBIffoZ2PeCLLb-_53n9-gHgGKNTHNdIufYUE0rTL2CIGWEJZhP6FQwR5ihhnP4ZgAPvnxBCgiL-HQwI44QzMR6CtwvtzdpCV8Hpq1E1PK-dK2HWNRsPK9fCTAWjbfBwZcIjvOh91dkiGGcje-VsUBZmj703rnbr_gzOXLPpgtoB96ErjfZQ2Wip2-jXKFtouNQ-GLs-At8qVXv9Y7cfgoery-XsOlnczn_PpovEpFikCdEk16hUSvNK0UIUiBU8L-P7GRciJ6RCpOIoz1NEeV6UhSJkjFiVU6FSHq8Pwa-t76Z1f7vYWzbGF7quldWu8xJzRijmE8Yj-vMT-uS6Ns7yTtExTQWdjCN1sqO6vNGl3LSmUW0v__9rBEZb4MXUut_XMZLvgckYmPwITE5v7z4OUZFsFcYH_bpXqPZZcpEKJlc3c3ktMracZyt5nv4DTNiYdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648437498</pqid></control><display><type>article</type><title>Design of Axial Blood Pumps for Patients With Dysfunctional Fontan Physiology: Computational Studies and Performance Testing</title><source>Wiley</source><creator>Kafagy, Dhyaa H. ; Dwyer, Thomas W. ; McKenna, Kelli L. ; Mulles, Jean P. ; Chopski, Steven G. ; Moskowitz, William B. ; Throckmorton, Amy L.</creator><creatorcontrib>Kafagy, Dhyaa H. ; Dwyer, Thomas W. ; McKenna, Kelli L. ; Mulles, Jean P. ; Chopski, Steven G. ; Moskowitz, William B. ; Throckmorton, Amy L.</creatorcontrib><description>Limited treatment options for patients having dysfunctional single ventricle physiology motivate the necessity for alternative therapeutic options. To address this unmet need, we are developing a collapsible axial flow blood pump. This study investigated the impact of geometric simplicity to facilitate percutaneous placement and maintain optimal performance. Three new pump designs were numerically evaluated. A transient simulation explored the impact of respiration on blood flow conditions over the entire respiratory cycle. Prototype testing of the top performing pump design was completed. The top performing Rec design generated the highest pressure rise range of 2–38 mm Hg for flow rates of 1–4 L/min at 4000–7000 RPM, exceeding the performance of the other two configurations by more than 26%. The blood damage indices for the new pump designs were determined to be below 0.5% and predicted hemolysis levels remained low at less than 7 × 10−5 g/100 L. Prototype testing of the Rec design confirmed numerical predictions to within an average of approximately 22%. These findings demonstrate that the pumps are reasonably versatile in operational ability, meet pressure‐flow requirements to support Fontan patients, and are expected to have low levels of blood trauma.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/aor.12443</identifier><identifier>PMID: 25626578</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adolescent ; Adult ; Blood pump ; Child ; Child, Preschool ; Computational fluid dynamics ; Computer-Aided Design ; Equipment Failure Analysis ; Equipment Safety ; Female ; Fontan physiology ; Fontan Procedure - adverse effects ; Fontan Procedure - methods ; Heart Defects, Congenital - diagnosis ; Heart Defects, Congenital - surgery ; Heart-Assist Devices ; Humans ; Intravascular blood pump ; Male ; Mechanical cavopulmonary assist ; Models, Cardiovascular ; Pediatric circulatory support ; Prosthesis Design ; Risk Assessment ; Single ventricle physiology ; Total cavopulmonary connection</subject><ispartof>Artificial organs, 2015-01, Vol.39 (1), p.34-42</ispartof><rights>Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25626578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kafagy, Dhyaa H.</creatorcontrib><creatorcontrib>Dwyer, Thomas W.</creatorcontrib><creatorcontrib>McKenna, Kelli L.</creatorcontrib><creatorcontrib>Mulles, Jean P.</creatorcontrib><creatorcontrib>Chopski, Steven G.</creatorcontrib><creatorcontrib>Moskowitz, William B.</creatorcontrib><creatorcontrib>Throckmorton, Amy L.</creatorcontrib><title>Design of Axial Blood Pumps for Patients With Dysfunctional Fontan Physiology: Computational Studies and Performance Testing</title><title>Artificial organs</title><addtitle>Artificial Organs</addtitle><description>Limited treatment options for patients having dysfunctional single ventricle physiology motivate the necessity for alternative therapeutic options. To address this unmet need, we are developing a collapsible axial flow blood pump. This study investigated the impact of geometric simplicity to facilitate percutaneous placement and maintain optimal performance. Three new pump designs were numerically evaluated. A transient simulation explored the impact of respiration on blood flow conditions over the entire respiratory cycle. Prototype testing of the top performing pump design was completed. The top performing Rec design generated the highest pressure rise range of 2–38 mm Hg for flow rates of 1–4 L/min at 4000–7000 RPM, exceeding the performance of the other two configurations by more than 26%. The blood damage indices for the new pump designs were determined to be below 0.5% and predicted hemolysis levels remained low at less than 7 × 10−5 g/100 L. Prototype testing of the Rec design confirmed numerical predictions to within an average of approximately 22%. These findings demonstrate that the pumps are reasonably versatile in operational ability, meet pressure‐flow requirements to support Fontan patients, and are expected to have low levels of blood trauma.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Blood pump</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Computational fluid dynamics</subject><subject>Computer-Aided Design</subject><subject>Equipment Failure Analysis</subject><subject>Equipment Safety</subject><subject>Female</subject><subject>Fontan physiology</subject><subject>Fontan Procedure - adverse effects</subject><subject>Fontan Procedure - methods</subject><subject>Heart Defects, Congenital - diagnosis</subject><subject>Heart Defects, Congenital - surgery</subject><subject>Heart-Assist Devices</subject><subject>Humans</subject><subject>Intravascular blood pump</subject><subject>Male</subject><subject>Mechanical cavopulmonary assist</subject><subject>Models, Cardiovascular</subject><subject>Pediatric circulatory support</subject><subject>Prosthesis Design</subject><subject>Risk Assessment</subject><subject>Single ventricle physiology</subject><subject>Total cavopulmonary connection</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkU9P2zAYxq1p01pgB74AsrTLLqG24z8tt1KgTKoggqLuZjmJUwyJ3cWOIBIffoZ2PeCLLb-_53n9-gHgGKNTHNdIufYUE0rTL2CIGWEJZhP6FQwR5ihhnP4ZgAPvnxBCgiL-HQwI44QzMR6CtwvtzdpCV8Hpq1E1PK-dK2HWNRsPK9fCTAWjbfBwZcIjvOh91dkiGGcje-VsUBZmj703rnbr_gzOXLPpgtoB96ErjfZQ2Wip2-jXKFtouNQ-GLs-At8qVXv9Y7cfgoery-XsOlnczn_PpovEpFikCdEk16hUSvNK0UIUiBU8L-P7GRciJ6RCpOIoz1NEeV6UhSJkjFiVU6FSHq8Pwa-t76Z1f7vYWzbGF7quldWu8xJzRijmE8Yj-vMT-uS6Ns7yTtExTQWdjCN1sqO6vNGl3LSmUW0v__9rBEZb4MXUut_XMZLvgckYmPwITE5v7z4OUZFsFcYH_bpXqPZZcpEKJlc3c3ktMracZyt5nv4DTNiYdA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Kafagy, Dhyaa H.</creator><creator>Dwyer, Thomas W.</creator><creator>McKenna, Kelli L.</creator><creator>Mulles, Jean P.</creator><creator>Chopski, Steven G.</creator><creator>Moskowitz, William B.</creator><creator>Throckmorton, Amy L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Design of Axial Blood Pumps for Patients With Dysfunctional Fontan Physiology: Computational Studies and Performance Testing</title><author>Kafagy, Dhyaa H. ; Dwyer, Thomas W. ; McKenna, Kelli L. ; Mulles, Jean P. ; Chopski, Steven G. ; Moskowitz, William B. ; Throckmorton, Amy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3173-2e2be0daae6fa4c7c05c6bd5785677b22f02f60bb3046bcdca22805fb47a36bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Blood pump</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Computational fluid dynamics</topic><topic>Computer-Aided Design</topic><topic>Equipment Failure Analysis</topic><topic>Equipment Safety</topic><topic>Female</topic><topic>Fontan physiology</topic><topic>Fontan Procedure - adverse effects</topic><topic>Fontan Procedure - methods</topic><topic>Heart Defects, Congenital - diagnosis</topic><topic>Heart Defects, Congenital - surgery</topic><topic>Heart-Assist Devices</topic><topic>Humans</topic><topic>Intravascular blood pump</topic><topic>Male</topic><topic>Mechanical cavopulmonary assist</topic><topic>Models, Cardiovascular</topic><topic>Pediatric circulatory support</topic><topic>Prosthesis Design</topic><topic>Risk Assessment</topic><topic>Single ventricle physiology</topic><topic>Total cavopulmonary connection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kafagy, Dhyaa H.</creatorcontrib><creatorcontrib>Dwyer, Thomas W.</creatorcontrib><creatorcontrib>McKenna, Kelli L.</creatorcontrib><creatorcontrib>Mulles, Jean P.</creatorcontrib><creatorcontrib>Chopski, Steven G.</creatorcontrib><creatorcontrib>Moskowitz, William B.</creatorcontrib><creatorcontrib>Throckmorton, Amy L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kafagy, Dhyaa H.</au><au>Dwyer, Thomas W.</au><au>McKenna, Kelli L.</au><au>Mulles, Jean P.</au><au>Chopski, Steven G.</au><au>Moskowitz, William B.</au><au>Throckmorton, Amy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Axial Blood Pumps for Patients With Dysfunctional Fontan Physiology: Computational Studies and Performance Testing</atitle><jtitle>Artificial organs</jtitle><addtitle>Artificial Organs</addtitle><date>2015-01</date><risdate>2015</risdate><volume>39</volume><issue>1</issue><spage>34</spage><epage>42</epage><pages>34-42</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>Limited treatment options for patients having dysfunctional single ventricle physiology motivate the necessity for alternative therapeutic options. To address this unmet need, we are developing a collapsible axial flow blood pump. This study investigated the impact of geometric simplicity to facilitate percutaneous placement and maintain optimal performance. Three new pump designs were numerically evaluated. A transient simulation explored the impact of respiration on blood flow conditions over the entire respiratory cycle. Prototype testing of the top performing pump design was completed. The top performing Rec design generated the highest pressure rise range of 2–38 mm Hg for flow rates of 1–4 L/min at 4000–7000 RPM, exceeding the performance of the other two configurations by more than 26%. The blood damage indices for the new pump designs were determined to be below 0.5% and predicted hemolysis levels remained low at less than 7 × 10−5 g/100 L. Prototype testing of the Rec design confirmed numerical predictions to within an average of approximately 22%. These findings demonstrate that the pumps are reasonably versatile in operational ability, meet pressure‐flow requirements to support Fontan patients, and are expected to have low levels of blood trauma.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25626578</pmid><doi>10.1111/aor.12443</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0160-564X |
ispartof | Artificial organs, 2015-01, Vol.39 (1), p.34-42 |
issn | 0160-564X 1525-1594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1652416956 |
source | Wiley |
subjects | Adolescent Adult Blood pump Child Child, Preschool Computational fluid dynamics Computer-Aided Design Equipment Failure Analysis Equipment Safety Female Fontan physiology Fontan Procedure - adverse effects Fontan Procedure - methods Heart Defects, Congenital - diagnosis Heart Defects, Congenital - surgery Heart-Assist Devices Humans Intravascular blood pump Male Mechanical cavopulmonary assist Models, Cardiovascular Pediatric circulatory support Prosthesis Design Risk Assessment Single ventricle physiology Total cavopulmonary connection |
title | Design of Axial Blood Pumps for Patients With Dysfunctional Fontan Physiology: Computational Studies and Performance Testing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Axial%20Blood%20Pumps%20for%20Patients%20With%20Dysfunctional%20Fontan%20Physiology:%20Computational%20Studies%20and%20Performance%20Testing&rft.jtitle=Artificial%20organs&rft.au=Kafagy,%20Dhyaa%20H.&rft.date=2015-01&rft.volume=39&rft.issue=1&rft.spage=34&rft.epage=42&rft.pages=34-42&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/aor.12443&rft_dat=%3Cproquest_pubme%3E1652416956%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i3173-2e2be0daae6fa4c7c05c6bd5785677b22f02f60bb3046bcdca22805fb47a36bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1648437498&rft_id=info:pmid/25626578&rfr_iscdi=true |