Loading…
Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI
[Display omitted] •MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compen...
Saved in:
Published in: | Medical image analysis 2015-01, Vol.19 (1), p.110-120 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3 |
container_end_page | 120 |
container_issue | 1 |
container_start_page | 110 |
container_title | Medical image analysis |
container_volume | 19 |
creator | Grimm, Robert Fürst, Sebastian Souvatzoglou, Michael Forman, Christoph Hutter, Jana Dregely, Isabel Ziegler, Sibylle I. Kiefer, Berthold Hornegger, Joachim Block, Kai Tobias Nekolla, Stephan G. |
description | [Display omitted]
•MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compensated reconstructions in 15 oncological patients.•Motion compensation yields high lesion sharpness without SNR loss.
Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, and how the model is employed for motion-corrected PET reconstruction. MRI self-gating is applied to perform respiratory gating of the MRI data and simultaneously acquired PET raw data. After gated PET reconstruction, the MRI motion model is used to fuse the individual gates into a single, motion-compensated volume with high signal-to-noise ratio (SNR). The proposed method is evaluated in vivo for 15 clinical patients. The gating requires 5–7 bins to capture the motion to an average accuracy of 2mm. With 5 bins, the motion-modeling scan can be shortened to 3–4min. The motion-compensated reconstructions show significantly higher accuracy in lesion quantification in terms of standardized uptake value (SUV) and different measures of lesion contrast compared to ungated PET reconstruction. Furthermore, unlike gated reconstructions, the motion-compensated reconstruction does not lead to SNR loss. |
doi_str_mv | 10.1016/j.media.2014.08.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652434713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841514001376</els_id><sourcerecordid>1652434713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gSA9etltssl-5OBBStVCRdEevIVsMltSdjdrshX6702_PAoDM2HeeSfzIHRLcEwwySbruAFtZJxgwmJcxBjTMzQkNCNRwRJ6_leTdICuvF9jjHPG8CUaJCnLCKVkiL4-oa6ilexBj18_5uPG9sa2IWmoTbsaV9aNHfjOONlbtz31lW06aL3cP8wueli5vcv7bDkJTtfoopK1h5tjHqHl02w5fYkWb8_z6eMiUizhfURIxbHGmeRchU9luio5B8gl5kBJWiZJxjIFkOa8ylmpdYULBgWhpMwLXdIRuj_Yds5-b8D3ojFeQV3LFuzGC5KlCaMsD9eOED1IlbPeO6hE50wj3VYQLHZExVrsiYodUYELEYiGqbvjgk0Zun8zJ4RB8HAQQLjyx4ATXhloVXByoHqhrfl3wS8FPIf6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652434713</pqid></control><display><type>article</type><title>Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI</title><source>ScienceDirect Journals</source><creator>Grimm, Robert ; Fürst, Sebastian ; Souvatzoglou, Michael ; Forman, Christoph ; Hutter, Jana ; Dregely, Isabel ; Ziegler, Sibylle I. ; Kiefer, Berthold ; Hornegger, Joachim ; Block, Kai Tobias ; Nekolla, Stephan G.</creator><creatorcontrib>Grimm, Robert ; Fürst, Sebastian ; Souvatzoglou, Michael ; Forman, Christoph ; Hutter, Jana ; Dregely, Isabel ; Ziegler, Sibylle I. ; Kiefer, Berthold ; Hornegger, Joachim ; Block, Kai Tobias ; Nekolla, Stephan G.</creatorcontrib><description>[Display omitted]
•MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compensated reconstructions in 15 oncological patients.•Motion compensation yields high lesion sharpness without SNR loss.
Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, and how the model is employed for motion-corrected PET reconstruction. MRI self-gating is applied to perform respiratory gating of the MRI data and simultaneously acquired PET raw data. After gated PET reconstruction, the MRI motion model is used to fuse the individual gates into a single, motion-compensated volume with high signal-to-noise ratio (SNR). The proposed method is evaluated in vivo for 15 clinical patients. The gating requires 5–7 bins to capture the motion to an average accuracy of 2mm. With 5 bins, the motion-modeling scan can be shortened to 3–4min. The motion-compensated reconstructions show significantly higher accuracy in lesion quantification in terms of standardized uptake value (SUV) and different measures of lesion contrast compared to ungated PET reconstruction. Furthermore, unlike gated reconstructions, the motion-compensated reconstruction does not lead to SNR loss.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2014.08.003</identifier><identifier>PMID: 25461331</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Abdominal Neoplasms - diagnosis ; Algorithms ; Computer Simulation ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Motion ; Motion compensation ; Movement ; MRI ; Multimodal Imaging - methods ; Pattern Recognition, Automated - methods ; PET/MRI ; Positron-Emission Tomography - methods ; Reproducibility of Results ; Respiratory gating ; Respiratory Mechanics ; Respiratory motion ; Respiratory-Gated Imaging Techniques - methods ; Sensitivity and Specificity ; Subtraction Technique ; Systems Integration ; Thoracic Neoplasms - diagnosis</subject><ispartof>Medical image analysis, 2015-01, Vol.19 (1), p.110-120</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3</citedby><cites>FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25461331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimm, Robert</creatorcontrib><creatorcontrib>Fürst, Sebastian</creatorcontrib><creatorcontrib>Souvatzoglou, Michael</creatorcontrib><creatorcontrib>Forman, Christoph</creatorcontrib><creatorcontrib>Hutter, Jana</creatorcontrib><creatorcontrib>Dregely, Isabel</creatorcontrib><creatorcontrib>Ziegler, Sibylle I.</creatorcontrib><creatorcontrib>Kiefer, Berthold</creatorcontrib><creatorcontrib>Hornegger, Joachim</creatorcontrib><creatorcontrib>Block, Kai Tobias</creatorcontrib><creatorcontrib>Nekolla, Stephan G.</creatorcontrib><title>Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>[Display omitted]
•MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compensated reconstructions in 15 oncological patients.•Motion compensation yields high lesion sharpness without SNR loss.
Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, and how the model is employed for motion-corrected PET reconstruction. MRI self-gating is applied to perform respiratory gating of the MRI data and simultaneously acquired PET raw data. After gated PET reconstruction, the MRI motion model is used to fuse the individual gates into a single, motion-compensated volume with high signal-to-noise ratio (SNR). The proposed method is evaluated in vivo for 15 clinical patients. The gating requires 5–7 bins to capture the motion to an average accuracy of 2mm. With 5 bins, the motion-modeling scan can be shortened to 3–4min. The motion-compensated reconstructions show significantly higher accuracy in lesion quantification in terms of standardized uptake value (SUV) and different measures of lesion contrast compared to ungated PET reconstruction. Furthermore, unlike gated reconstructions, the motion-compensated reconstruction does not lead to SNR loss.</description><subject>Abdominal Neoplasms - diagnosis</subject><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Motion</subject><subject>Motion compensation</subject><subject>Movement</subject><subject>MRI</subject><subject>Multimodal Imaging - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>PET/MRI</subject><subject>Positron-Emission Tomography - methods</subject><subject>Reproducibility of Results</subject><subject>Respiratory gating</subject><subject>Respiratory Mechanics</subject><subject>Respiratory motion</subject><subject>Respiratory-Gated Imaging Techniques - methods</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><subject>Systems Integration</subject><subject>Thoracic Neoplasms - diagnosis</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlZ_gSA9etltssl-5OBBStVCRdEevIVsMltSdjdrshX6702_PAoDM2HeeSfzIHRLcEwwySbruAFtZJxgwmJcxBjTMzQkNCNRwRJ6_leTdICuvF9jjHPG8CUaJCnLCKVkiL4-oa6ilexBj18_5uPG9sa2IWmoTbsaV9aNHfjOONlbtz31lW06aL3cP8wueli5vcv7bDkJTtfoopK1h5tjHqHl02w5fYkWb8_z6eMiUizhfURIxbHGmeRchU9luio5B8gl5kBJWiZJxjIFkOa8ylmpdYULBgWhpMwLXdIRuj_Yds5-b8D3ojFeQV3LFuzGC5KlCaMsD9eOED1IlbPeO6hE50wj3VYQLHZExVrsiYodUYELEYiGqbvjgk0Zun8zJ4RB8HAQQLjyx4ATXhloVXByoHqhrfl3wS8FPIf6</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Grimm, Robert</creator><creator>Fürst, Sebastian</creator><creator>Souvatzoglou, Michael</creator><creator>Forman, Christoph</creator><creator>Hutter, Jana</creator><creator>Dregely, Isabel</creator><creator>Ziegler, Sibylle I.</creator><creator>Kiefer, Berthold</creator><creator>Hornegger, Joachim</creator><creator>Block, Kai Tobias</creator><creator>Nekolla, Stephan G.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI</title><author>Grimm, Robert ; Fürst, Sebastian ; Souvatzoglou, Michael ; Forman, Christoph ; Hutter, Jana ; Dregely, Isabel ; Ziegler, Sibylle I. ; Kiefer, Berthold ; Hornegger, Joachim ; Block, Kai Tobias ; Nekolla, Stephan G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abdominal Neoplasms - diagnosis</topic><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Motion</topic><topic>Motion compensation</topic><topic>Movement</topic><topic>MRI</topic><topic>Multimodal Imaging - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>PET/MRI</topic><topic>Positron-Emission Tomography - methods</topic><topic>Reproducibility of Results</topic><topic>Respiratory gating</topic><topic>Respiratory Mechanics</topic><topic>Respiratory motion</topic><topic>Respiratory-Gated Imaging Techniques - methods</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><topic>Systems Integration</topic><topic>Thoracic Neoplasms - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm, Robert</creatorcontrib><creatorcontrib>Fürst, Sebastian</creatorcontrib><creatorcontrib>Souvatzoglou, Michael</creatorcontrib><creatorcontrib>Forman, Christoph</creatorcontrib><creatorcontrib>Hutter, Jana</creatorcontrib><creatorcontrib>Dregely, Isabel</creatorcontrib><creatorcontrib>Ziegler, Sibylle I.</creatorcontrib><creatorcontrib>Kiefer, Berthold</creatorcontrib><creatorcontrib>Hornegger, Joachim</creatorcontrib><creatorcontrib>Block, Kai Tobias</creatorcontrib><creatorcontrib>Nekolla, Stephan G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, Robert</au><au>Fürst, Sebastian</au><au>Souvatzoglou, Michael</au><au>Forman, Christoph</au><au>Hutter, Jana</au><au>Dregely, Isabel</au><au>Ziegler, Sibylle I.</au><au>Kiefer, Berthold</au><au>Hornegger, Joachim</au><au>Block, Kai Tobias</au><au>Nekolla, Stephan G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>110</spage><epage>120</epage><pages>110-120</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>[Display omitted]
•MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compensated reconstructions in 15 oncological patients.•Motion compensation yields high lesion sharpness without SNR loss.
Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, and how the model is employed for motion-corrected PET reconstruction. MRI self-gating is applied to perform respiratory gating of the MRI data and simultaneously acquired PET raw data. After gated PET reconstruction, the MRI motion model is used to fuse the individual gates into a single, motion-compensated volume with high signal-to-noise ratio (SNR). The proposed method is evaluated in vivo for 15 clinical patients. The gating requires 5–7 bins to capture the motion to an average accuracy of 2mm. With 5 bins, the motion-modeling scan can be shortened to 3–4min. The motion-compensated reconstructions show significantly higher accuracy in lesion quantification in terms of standardized uptake value (SUV) and different measures of lesion contrast compared to ungated PET reconstruction. Furthermore, unlike gated reconstructions, the motion-compensated reconstruction does not lead to SNR loss.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25461331</pmid><doi>10.1016/j.media.2014.08.003</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2015-01, Vol.19 (1), p.110-120 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_1652434713 |
source | ScienceDirect Journals |
subjects | Abdominal Neoplasms - diagnosis Algorithms Computer Simulation Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Models, Statistical Motion Motion compensation Movement MRI Multimodal Imaging - methods Pattern Recognition, Automated - methods PET/MRI Positron-Emission Tomography - methods Reproducibility of Results Respiratory gating Respiratory Mechanics Respiratory motion Respiratory-Gated Imaging Techniques - methods Sensitivity and Specificity Subtraction Technique Systems Integration Thoracic Neoplasms - diagnosis |
title | Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-gated%20MRI%20motion%20modeling%20for%20respiratory%20motion%20compensation%20in%20integrated%20PET/MRI&rft.jtitle=Medical%20image%20analysis&rft.au=Grimm,%20Robert&rft.date=2015-01-01&rft.volume=19&rft.issue=1&rft.spage=110&rft.epage=120&rft.pages=110-120&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2014.08.003&rft_dat=%3Cproquest_cross%3E1652434713%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652434713&rft_id=info:pmid/25461331&rfr_iscdi=true |