Loading…

Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI

[Display omitted] •MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compen...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis 2015-01, Vol.19 (1), p.110-120
Main Authors: Grimm, Robert, Fürst, Sebastian, Souvatzoglou, Michael, Forman, Christoph, Hutter, Jana, Dregely, Isabel, Ziegler, Sibylle I., Kiefer, Berthold, Hornegger, Joachim, Block, Kai Tobias, Nekolla, Stephan G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3
cites cdi_FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3
container_end_page 120
container_issue 1
container_start_page 110
container_title Medical image analysis
container_volume 19
creator Grimm, Robert
Fürst, Sebastian
Souvatzoglou, Michael
Forman, Christoph
Hutter, Jana
Dregely, Isabel
Ziegler, Sibylle I.
Kiefer, Berthold
Hornegger, Joachim
Block, Kai Tobias
Nekolla, Stephan G.
description [Display omitted] •MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compensated reconstructions in 15 oncological patients.•Motion compensation yields high lesion sharpness without SNR loss. Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, and how the model is employed for motion-corrected PET reconstruction. MRI self-gating is applied to perform respiratory gating of the MRI data and simultaneously acquired PET raw data. After gated PET reconstruction, the MRI motion model is used to fuse the individual gates into a single, motion-compensated volume with high signal-to-noise ratio (SNR). The proposed method is evaluated in vivo for 15 clinical patients. The gating requires 5–7 bins to capture the motion to an average accuracy of 2mm. With 5 bins, the motion-modeling scan can be shortened to 3–4min. The motion-compensated reconstructions show significantly higher accuracy in lesion quantification in terms of standardized uptake value (SUV) and different measures of lesion contrast compared to ungated PET reconstruction. Furthermore, unlike gated reconstructions, the motion-compensated reconstruction does not lead to SNR loss.
doi_str_mv 10.1016/j.media.2014.08.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652434713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841514001376</els_id><sourcerecordid>1652434713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gSA9etltssl-5OBBStVCRdEevIVsMltSdjdrshX6702_PAoDM2HeeSfzIHRLcEwwySbruAFtZJxgwmJcxBjTMzQkNCNRwRJ6_leTdICuvF9jjHPG8CUaJCnLCKVkiL4-oa6ilexBj18_5uPG9sa2IWmoTbsaV9aNHfjOONlbtz31lW06aL3cP8wueli5vcv7bDkJTtfoopK1h5tjHqHl02w5fYkWb8_z6eMiUizhfURIxbHGmeRchU9luio5B8gl5kBJWiZJxjIFkOa8ylmpdYULBgWhpMwLXdIRuj_Yds5-b8D3ojFeQV3LFuzGC5KlCaMsD9eOED1IlbPeO6hE50wj3VYQLHZExVrsiYodUYELEYiGqbvjgk0Zun8zJ4RB8HAQQLjyx4ATXhloVXByoHqhrfl3wS8FPIf6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652434713</pqid></control><display><type>article</type><title>Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI</title><source>ScienceDirect Journals</source><creator>Grimm, Robert ; Fürst, Sebastian ; Souvatzoglou, Michael ; Forman, Christoph ; Hutter, Jana ; Dregely, Isabel ; Ziegler, Sibylle I. ; Kiefer, Berthold ; Hornegger, Joachim ; Block, Kai Tobias ; Nekolla, Stephan G.</creator><creatorcontrib>Grimm, Robert ; Fürst, Sebastian ; Souvatzoglou, Michael ; Forman, Christoph ; Hutter, Jana ; Dregely, Isabel ; Ziegler, Sibylle I. ; Kiefer, Berthold ; Hornegger, Joachim ; Block, Kai Tobias ; Nekolla, Stephan G.</creatorcontrib><description>[Display omitted] •MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compensated reconstructions in 15 oncological patients.•Motion compensation yields high lesion sharpness without SNR loss. Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, and how the model is employed for motion-corrected PET reconstruction. MRI self-gating is applied to perform respiratory gating of the MRI data and simultaneously acquired PET raw data. After gated PET reconstruction, the MRI motion model is used to fuse the individual gates into a single, motion-compensated volume with high signal-to-noise ratio (SNR). The proposed method is evaluated in vivo for 15 clinical patients. The gating requires 5–7 bins to capture the motion to an average accuracy of 2mm. With 5 bins, the motion-modeling scan can be shortened to 3–4min. The motion-compensated reconstructions show significantly higher accuracy in lesion quantification in terms of standardized uptake value (SUV) and different measures of lesion contrast compared to ungated PET reconstruction. Furthermore, unlike gated reconstructions, the motion-compensated reconstruction does not lead to SNR loss.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2014.08.003</identifier><identifier>PMID: 25461331</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Abdominal Neoplasms - diagnosis ; Algorithms ; Computer Simulation ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Motion ; Motion compensation ; Movement ; MRI ; Multimodal Imaging - methods ; Pattern Recognition, Automated - methods ; PET/MRI ; Positron-Emission Tomography - methods ; Reproducibility of Results ; Respiratory gating ; Respiratory Mechanics ; Respiratory motion ; Respiratory-Gated Imaging Techniques - methods ; Sensitivity and Specificity ; Subtraction Technique ; Systems Integration ; Thoracic Neoplasms - diagnosis</subject><ispartof>Medical image analysis, 2015-01, Vol.19 (1), p.110-120</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3</citedby><cites>FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25461331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimm, Robert</creatorcontrib><creatorcontrib>Fürst, Sebastian</creatorcontrib><creatorcontrib>Souvatzoglou, Michael</creatorcontrib><creatorcontrib>Forman, Christoph</creatorcontrib><creatorcontrib>Hutter, Jana</creatorcontrib><creatorcontrib>Dregely, Isabel</creatorcontrib><creatorcontrib>Ziegler, Sibylle I.</creatorcontrib><creatorcontrib>Kiefer, Berthold</creatorcontrib><creatorcontrib>Hornegger, Joachim</creatorcontrib><creatorcontrib>Block, Kai Tobias</creatorcontrib><creatorcontrib>Nekolla, Stephan G.</creatorcontrib><title>Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>[Display omitted] •MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compensated reconstructions in 15 oncological patients.•Motion compensation yields high lesion sharpness without SNR loss. Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, and how the model is employed for motion-corrected PET reconstruction. MRI self-gating is applied to perform respiratory gating of the MRI data and simultaneously acquired PET raw data. After gated PET reconstruction, the MRI motion model is used to fuse the individual gates into a single, motion-compensated volume with high signal-to-noise ratio (SNR). The proposed method is evaluated in vivo for 15 clinical patients. The gating requires 5–7 bins to capture the motion to an average accuracy of 2mm. With 5 bins, the motion-modeling scan can be shortened to 3–4min. The motion-compensated reconstructions show significantly higher accuracy in lesion quantification in terms of standardized uptake value (SUV) and different measures of lesion contrast compared to ungated PET reconstruction. Furthermore, unlike gated reconstructions, the motion-compensated reconstruction does not lead to SNR loss.</description><subject>Abdominal Neoplasms - diagnosis</subject><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Motion</subject><subject>Motion compensation</subject><subject>Movement</subject><subject>MRI</subject><subject>Multimodal Imaging - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>PET/MRI</subject><subject>Positron-Emission Tomography - methods</subject><subject>Reproducibility of Results</subject><subject>Respiratory gating</subject><subject>Respiratory Mechanics</subject><subject>Respiratory motion</subject><subject>Respiratory-Gated Imaging Techniques - methods</subject><subject>Sensitivity and Specificity</subject><subject>Subtraction Technique</subject><subject>Systems Integration</subject><subject>Thoracic Neoplasms - diagnosis</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlZ_gSA9etltssl-5OBBStVCRdEevIVsMltSdjdrshX6702_PAoDM2HeeSfzIHRLcEwwySbruAFtZJxgwmJcxBjTMzQkNCNRwRJ6_leTdICuvF9jjHPG8CUaJCnLCKVkiL4-oa6ilexBj18_5uPG9sa2IWmoTbsaV9aNHfjOONlbtz31lW06aL3cP8wueli5vcv7bDkJTtfoopK1h5tjHqHl02w5fYkWb8_z6eMiUizhfURIxbHGmeRchU9luio5B8gl5kBJWiZJxjIFkOa8ylmpdYULBgWhpMwLXdIRuj_Yds5-b8D3ojFeQV3LFuzGC5KlCaMsD9eOED1IlbPeO6hE50wj3VYQLHZExVrsiYodUYELEYiGqbvjgk0Zun8zJ4RB8HAQQLjyx4ATXhloVXByoHqhrfl3wS8FPIf6</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Grimm, Robert</creator><creator>Fürst, Sebastian</creator><creator>Souvatzoglou, Michael</creator><creator>Forman, Christoph</creator><creator>Hutter, Jana</creator><creator>Dregely, Isabel</creator><creator>Ziegler, Sibylle I.</creator><creator>Kiefer, Berthold</creator><creator>Hornegger, Joachim</creator><creator>Block, Kai Tobias</creator><creator>Nekolla, Stephan G.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI</title><author>Grimm, Robert ; Fürst, Sebastian ; Souvatzoglou, Michael ; Forman, Christoph ; Hutter, Jana ; Dregely, Isabel ; Ziegler, Sibylle I. ; Kiefer, Berthold ; Hornegger, Joachim ; Block, Kai Tobias ; Nekolla, Stephan G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abdominal Neoplasms - diagnosis</topic><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Motion</topic><topic>Motion compensation</topic><topic>Movement</topic><topic>MRI</topic><topic>Multimodal Imaging - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>PET/MRI</topic><topic>Positron-Emission Tomography - methods</topic><topic>Reproducibility of Results</topic><topic>Respiratory gating</topic><topic>Respiratory Mechanics</topic><topic>Respiratory motion</topic><topic>Respiratory-Gated Imaging Techniques - methods</topic><topic>Sensitivity and Specificity</topic><topic>Subtraction Technique</topic><topic>Systems Integration</topic><topic>Thoracic Neoplasms - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm, Robert</creatorcontrib><creatorcontrib>Fürst, Sebastian</creatorcontrib><creatorcontrib>Souvatzoglou, Michael</creatorcontrib><creatorcontrib>Forman, Christoph</creatorcontrib><creatorcontrib>Hutter, Jana</creatorcontrib><creatorcontrib>Dregely, Isabel</creatorcontrib><creatorcontrib>Ziegler, Sibylle I.</creatorcontrib><creatorcontrib>Kiefer, Berthold</creatorcontrib><creatorcontrib>Hornegger, Joachim</creatorcontrib><creatorcontrib>Block, Kai Tobias</creatorcontrib><creatorcontrib>Nekolla, Stephan G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, Robert</au><au>Fürst, Sebastian</au><au>Souvatzoglou, Michael</au><au>Forman, Christoph</au><au>Hutter, Jana</au><au>Dregely, Isabel</au><au>Ziegler, Sibylle I.</au><au>Kiefer, Berthold</au><au>Hornegger, Joachim</au><au>Block, Kai Tobias</au><au>Nekolla, Stephan G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>110</spage><epage>120</epage><pages>110-120</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>[Display omitted] •MRI-based compensation of respiratory motion for PET in integrated PET/MRI systems.•Motion modeling with the help of a stack-of-stars MRI pulse sequence and self-gating.•Extensive experiments: minimal number of respiratory bins, required scan time.•Ungated, gated and motion-compensated reconstructions in 15 oncological patients.•Motion compensation yields high lesion sharpness without SNR loss. Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, and how the model is employed for motion-corrected PET reconstruction. MRI self-gating is applied to perform respiratory gating of the MRI data and simultaneously acquired PET raw data. After gated PET reconstruction, the MRI motion model is used to fuse the individual gates into a single, motion-compensated volume with high signal-to-noise ratio (SNR). The proposed method is evaluated in vivo for 15 clinical patients. The gating requires 5–7 bins to capture the motion to an average accuracy of 2mm. With 5 bins, the motion-modeling scan can be shortened to 3–4min. The motion-compensated reconstructions show significantly higher accuracy in lesion quantification in terms of standardized uptake value (SUV) and different measures of lesion contrast compared to ungated PET reconstruction. Furthermore, unlike gated reconstructions, the motion-compensated reconstruction does not lead to SNR loss.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25461331</pmid><doi>10.1016/j.media.2014.08.003</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2015-01, Vol.19 (1), p.110-120
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_1652434713
source ScienceDirect Journals
subjects Abdominal Neoplasms - diagnosis
Algorithms
Computer Simulation
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Models, Statistical
Motion
Motion compensation
Movement
MRI
Multimodal Imaging - methods
Pattern Recognition, Automated - methods
PET/MRI
Positron-Emission Tomography - methods
Reproducibility of Results
Respiratory gating
Respiratory Mechanics
Respiratory motion
Respiratory-Gated Imaging Techniques - methods
Sensitivity and Specificity
Subtraction Technique
Systems Integration
Thoracic Neoplasms - diagnosis
title Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-gated%20MRI%20motion%20modeling%20for%20respiratory%20motion%20compensation%20in%20integrated%20PET/MRI&rft.jtitle=Medical%20image%20analysis&rft.au=Grimm,%20Robert&rft.date=2015-01-01&rft.volume=19&rft.issue=1&rft.spage=110&rft.epage=120&rft.pages=110-120&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2014.08.003&rft_dat=%3Cproquest_cross%3E1652434713%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-11f90d06a99c5466dfb99ee7a09e315b22646cee579f74bddf084e8131b78db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652434713&rft_id=info:pmid/25461331&rfr_iscdi=true