Loading…

Long Passage Times of Short ssDNA Molecules through Metallized Nanopores Fabricated by Controlled Breakdown

The fabrication of individual nanopores in metallized dielectric membranes using controlled breakdown directly in solution is described. Nanopores as small as 1.5‐nm in diameter are fabricated in Au‐coated silicon nitride membranes immersed in 1 m KCl by subjecting them to high electric fields. The...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2014-12, Vol.24 (48), p.7745-7753
Main Authors: Kwok, Harold, Waugh, Matthew, Bustamante, José, Briggs, Kyle, Tabard-Cossa, Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fabrication of individual nanopores in metallized dielectric membranes using controlled breakdown directly in solution is described. Nanopores as small as 1.5‐nm in diameter are fabricated in Au‐coated silicon nitride membranes immersed in 1 m KCl by subjecting them to high electric fields. The physical and electrical characteristics of nanopores produced with this method are presented. The translocation of short single‐stranded DNA molecules is demonstrated through such nanopore devices without further passivation of the metallic surface. Metallized nanopores can prolong the translocation times of 50‐nt ssDNA fragments by as much as two orders of magnitude, while the slowest events can reach an average speed as slow as 2 nucleotides per millisecond. The mechanism for the long dwell‐time distribution is differentiated from prior studies, which relied on friction to slow down DNA, and is attributed to nucleotide‐Au interactions. Controlled breakdown (CBD) is used to fabricate a single nanometer‐scale hole, or nanopore, in Au‐coated silicon nitride membranes immersed in 1 m KCl and subjected to high electric fields. These metallized nanopores can extend the dwell times of 50‐nt ssDNA fragments by as much as two orders of magnitude, by relying on nucleoside‐Au interactions.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201402468