Loading…

Pattern recognition in long-term Sooty Shearwater data: applying machine learning to create a harvest index

Rakiura Maori (New Zealand's southernmost group of indigenous peoples) have harvested the chicks of burrow-nesting Sooty Shearwaters (Titi; Puffinus griseus) for generations. As part of the harvest process, some families have maintained annual harvest diaries, some dating back to the l950s. We...

Full description

Saved in:
Bibliographic Details
Published in:Ecological applications 2014-12, Vol.24 (8), p.2107-2121
Main Authors: Humphries, G R W, Bragg, C, Overton, J, Lyver, B, Moller, H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2121
container_issue 8
container_start_page 2107
container_title Ecological applications
container_volume 24
creator Humphries, G R W
Bragg, C
Overton, J
Lyver, B
Moller, H
description Rakiura Maori (New Zealand's southernmost group of indigenous peoples) have harvested the chicks of burrow-nesting Sooty Shearwaters (Titi; Puffinus griseus) for generations. As part of the harvest process, some families have maintained annual harvest diaries, some dating back to the l950s. We used generalized boosted regression models, a machine-learning algorithm, to calculate a harvest index that takes into account factors that could impact the numbers of birds taken on any given hunt. The use of machine learning to correct for extraneous factors (e.g., hunting effort, skill level, or weather) and to create standardized measures could be applied to other systems such as fisheries or terrestrial resource management.
doi_str_mv 10.1890/13-2023.1.sm
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654674305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1654674305</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16546743053</originalsourceid><addsrcrecordid>eNqVjMFuwjAQRH1oJULprR-wRy4JtkOSlmtF1SMS3NEqbBNTZ53apsDf15X4AeYy0punEeJFyUK9vsmFKnMtdVmoIgwPIlOyUrlsajUR0xCOMkVrnYnvDcZInsFT6zo20TgGw2Add3kaBtg6F6-w7Qn9GROBA0ZcAY6jvRruYMC2N0xgk8D_IDpoPSUVEHr0vxRiejzQZSYev9AGer71k5h_rHfvn_no3c8pafvBhJasRSZ3CntVV8u6WZayKu9Q_wBB11Ed</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654674305</pqid></control><display><type>article</type><title>Pattern recognition in long-term Sooty Shearwater data: applying machine learning to create a harvest index</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Humphries, G R W ; Bragg, C ; Overton, J ; Lyver, B ; Moller, H</creator><creatorcontrib>Humphries, G R W ; Bragg, C ; Overton, J ; Lyver, B ; Moller, H</creatorcontrib><description>Rakiura Maori (New Zealand's southernmost group of indigenous peoples) have harvested the chicks of burrow-nesting Sooty Shearwaters (Titi; Puffinus griseus) for generations. As part of the harvest process, some families have maintained annual harvest diaries, some dating back to the l950s. We used generalized boosted regression models, a machine-learning algorithm, to calculate a harvest index that takes into account factors that could impact the numbers of birds taken on any given hunt. The use of machine learning to correct for extraneous factors (e.g., hunting effort, skill level, or weather) and to create standardized measures could be applied to other systems such as fisheries or terrestrial resource management.</description><identifier>ISSN: 1051-0761</identifier><identifier>DOI: 10.1890/13-2023.1.sm</identifier><language>eng</language><subject>Puffinus griseus</subject><ispartof>Ecological applications, 2014-12, Vol.24 (8), p.2107-2121</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Humphries, G R W</creatorcontrib><creatorcontrib>Bragg, C</creatorcontrib><creatorcontrib>Overton, J</creatorcontrib><creatorcontrib>Lyver, B</creatorcontrib><creatorcontrib>Moller, H</creatorcontrib><title>Pattern recognition in long-term Sooty Shearwater data: applying machine learning to create a harvest index</title><title>Ecological applications</title><description>Rakiura Maori (New Zealand's southernmost group of indigenous peoples) have harvested the chicks of burrow-nesting Sooty Shearwaters (Titi; Puffinus griseus) for generations. As part of the harvest process, some families have maintained annual harvest diaries, some dating back to the l950s. We used generalized boosted regression models, a machine-learning algorithm, to calculate a harvest index that takes into account factors that could impact the numbers of birds taken on any given hunt. The use of machine learning to correct for extraneous factors (e.g., hunting effort, skill level, or weather) and to create standardized measures could be applied to other systems such as fisheries or terrestrial resource management.</description><subject>Puffinus griseus</subject><issn>1051-0761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVjMFuwjAQRH1oJULprR-wRy4JtkOSlmtF1SMS3NEqbBNTZ53apsDf15X4AeYy0punEeJFyUK9vsmFKnMtdVmoIgwPIlOyUrlsajUR0xCOMkVrnYnvDcZInsFT6zo20TgGw2Add3kaBtg6F6-w7Qn9GROBA0ZcAY6jvRruYMC2N0xgk8D_IDpoPSUVEHr0vxRiejzQZSYev9AGer71k5h_rHfvn_no3c8pafvBhJasRSZ3CntVV8u6WZayKu9Q_wBB11Ed</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Humphries, G R W</creator><creator>Bragg, C</creator><creator>Overton, J</creator><creator>Lyver, B</creator><creator>Moller, H</creator><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20141201</creationdate><title>Pattern recognition in long-term Sooty Shearwater data: applying machine learning to create a harvest index</title><author>Humphries, G R W ; Bragg, C ; Overton, J ; Lyver, B ; Moller, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16546743053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Puffinus griseus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Humphries, G R W</creatorcontrib><creatorcontrib>Bragg, C</creatorcontrib><creatorcontrib>Overton, J</creatorcontrib><creatorcontrib>Lyver, B</creatorcontrib><creatorcontrib>Moller, H</creatorcontrib><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Humphries, G R W</au><au>Bragg, C</au><au>Overton, J</au><au>Lyver, B</au><au>Moller, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition in long-term Sooty Shearwater data: applying machine learning to create a harvest index</atitle><jtitle>Ecological applications</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>24</volume><issue>8</issue><spage>2107</spage><epage>2121</epage><pages>2107-2121</pages><issn>1051-0761</issn><abstract>Rakiura Maori (New Zealand's southernmost group of indigenous peoples) have harvested the chicks of burrow-nesting Sooty Shearwaters (Titi; Puffinus griseus) for generations. As part of the harvest process, some families have maintained annual harvest diaries, some dating back to the l950s. We used generalized boosted regression models, a machine-learning algorithm, to calculate a harvest index that takes into account factors that could impact the numbers of birds taken on any given hunt. The use of machine learning to correct for extraneous factors (e.g., hunting effort, skill level, or weather) and to create standardized measures could be applied to other systems such as fisheries or terrestrial resource management.</abstract><doi>10.1890/13-2023.1.sm</doi></addata></record>
fulltext fulltext
identifier ISSN: 1051-0761
ispartof Ecological applications, 2014-12, Vol.24 (8), p.2107-2121
issn 1051-0761
language eng
recordid cdi_proquest_miscellaneous_1654674305
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects Puffinus griseus
title Pattern recognition in long-term Sooty Shearwater data: applying machine learning to create a harvest index
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20in%20long-term%20Sooty%20Shearwater%20data:%20applying%20machine%20learning%20to%20create%20a%20harvest%20index&rft.jtitle=Ecological%20applications&rft.au=Humphries,%20G%20R%20W&rft.date=2014-12-01&rft.volume=24&rft.issue=8&rft.spage=2107&rft.epage=2121&rft.pages=2107-2121&rft.issn=1051-0761&rft_id=info:doi/10.1890/13-2023.1.sm&rft_dat=%3Cproquest%3E1654674305%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_16546743053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1654674305&rft_id=info:pmid/&rfr_iscdi=true