Loading…

Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks

We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon coolin...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2015-01, Vol.16 (1), p.304-310
Main Authors: Cingil, Hande E, Rombouts, Wolf H, van der Gucht, Jasper, Cohen Stuart, Martien A, Sprakel, Joris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053
cites cdi_FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053
container_end_page 310
container_issue 1
container_start_page 304
container_title Biomacromolecules
container_volume 16
creator Cingil, Hande E
Rombouts, Wolf H
van der Gucht, Jasper
Cohen Stuart, Martien A
Sprakel, Joris
description We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent.
doi_str_mv 10.1021/bm5015014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654679785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1645228623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053</originalsourceid><addsrcrecordid>eNqN0LtOwzAUBmALgWgpDLwA8oIEQ8CXOJcRSilIhTKAGCPHF3BJ4tZOqPr2GFo6MSBZOh4-_TrnB-AYowuMCL4sa4ZwePEO6GNGkihOENn9-bMoTfO0Bw68nyGEchqzfdAjjOZpjkkfTEeLznzySjUtfOLt-5KvPDQNfFBVa5o3yBsJx6rirbENtBq-qqqKbpQ2jZLw2ti5rVa1cvBRtUvrPvwh2NO88upoMwfg5Xb0PLyLJtPx_fBqEnEaZ23EeKkopiRGUmKFyjynEsk0JQRpUUqRZiwTKEm4ZloIxALQZYlk8JhgxOgAnK1z584uOuXbojZehOV4o2znC5ywOAmXZ_-hMSMkSwgN9HxNhbPeO6WLuTM1d6sCo-K76mJbdbAnm9iurJXcyt9uAzhdAy58MbOda0IhfwR9ATkBg6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645228623</pqid></control><display><type>article</type><title>Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Cingil, Hande E ; Rombouts, Wolf H ; van der Gucht, Jasper ; Cohen Stuart, Martien A ; Sprakel, Joris</creator><creatorcontrib>Cingil, Hande E ; Rombouts, Wolf H ; van der Gucht, Jasper ; Cohen Stuart, Martien A ; Sprakel, Joris</creatorcontrib><description>We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm5015014</identifier><identifier>PMID: 25397912</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biopolymers - biosynthesis ; Biopolymers - chemistry ; Collagen - chemistry ; Freezing ; Models, Theoretical ; Pichia - genetics ; Pichia - metabolism ; Pichia pastoris ; Rheology ; Thermodynamics</subject><ispartof>Biomacromolecules, 2015-01, Vol.16 (1), p.304-310</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053</citedby><cites>FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25397912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cingil, Hande E</creatorcontrib><creatorcontrib>Rombouts, Wolf H</creatorcontrib><creatorcontrib>van der Gucht, Jasper</creatorcontrib><creatorcontrib>Cohen Stuart, Martien A</creatorcontrib><creatorcontrib>Sprakel, Joris</creatorcontrib><title>Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent.</description><subject>Biopolymers - biosynthesis</subject><subject>Biopolymers - chemistry</subject><subject>Collagen - chemistry</subject><subject>Freezing</subject><subject>Models, Theoretical</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Pichia pastoris</subject><subject>Rheology</subject><subject>Thermodynamics</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0LtOwzAUBmALgWgpDLwA8oIEQ8CXOJcRSilIhTKAGCPHF3BJ4tZOqPr2GFo6MSBZOh4-_TrnB-AYowuMCL4sa4ZwePEO6GNGkihOENn9-bMoTfO0Bw68nyGEchqzfdAjjOZpjkkfTEeLznzySjUtfOLt-5KvPDQNfFBVa5o3yBsJx6rirbENtBq-qqqKbpQ2jZLw2ti5rVa1cvBRtUvrPvwh2NO88upoMwfg5Xb0PLyLJtPx_fBqEnEaZ23EeKkopiRGUmKFyjynEsk0JQRpUUqRZiwTKEm4ZloIxALQZYlk8JhgxOgAnK1z584uOuXbojZehOV4o2znC5ywOAmXZ_-hMSMkSwgN9HxNhbPeO6WLuTM1d6sCo-K76mJbdbAnm9iurJXcyt9uAzhdAy58MbOda0IhfwR9ATkBg6U</recordid><startdate>20150112</startdate><enddate>20150112</enddate><creator>Cingil, Hande E</creator><creator>Rombouts, Wolf H</creator><creator>van der Gucht, Jasper</creator><creator>Cohen Stuart, Martien A</creator><creator>Sprakel, Joris</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20150112</creationdate><title>Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks</title><author>Cingil, Hande E ; Rombouts, Wolf H ; van der Gucht, Jasper ; Cohen Stuart, Martien A ; Sprakel, Joris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biopolymers - biosynthesis</topic><topic>Biopolymers - chemistry</topic><topic>Collagen - chemistry</topic><topic>Freezing</topic><topic>Models, Theoretical</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Pichia pastoris</topic><topic>Rheology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cingil, Hande E</creatorcontrib><creatorcontrib>Rombouts, Wolf H</creatorcontrib><creatorcontrib>van der Gucht, Jasper</creatorcontrib><creatorcontrib>Cohen Stuart, Martien A</creatorcontrib><creatorcontrib>Sprakel, Joris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cingil, Hande E</au><au>Rombouts, Wolf H</au><au>van der Gucht, Jasper</au><au>Cohen Stuart, Martien A</au><au>Sprakel, Joris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2015-01-12</date><risdate>2015</risdate><volume>16</volume><issue>1</issue><spage>304</spage><epage>310</epage><pages>304-310</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25397912</pmid><doi>10.1021/bm5015014</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2015-01, Vol.16 (1), p.304-310
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_1654679785
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biopolymers - biosynthesis
Biopolymers - chemistry
Collagen - chemistry
Freezing
Models, Theoretical
Pichia - genetics
Pichia - metabolism
Pichia pastoris
Rheology
Thermodynamics
title Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalent%20Pathways%20in%20Melting%20and%20Gelation%20of%20Well-Defined%20Biopolymer%20Networks&rft.jtitle=Biomacromolecules&rft.au=Cingil,%20Hande%20E&rft.date=2015-01-12&rft.volume=16&rft.issue=1&rft.spage=304&rft.epage=310&rft.pages=304-310&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm5015014&rft_dat=%3Cproquest_cross%3E1645228623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1645228623&rft_id=info:pmid/25397912&rfr_iscdi=true