Loading…
Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks
We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon coolin...
Saved in:
Published in: | Biomacromolecules 2015-01, Vol.16 (1), p.304-310 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053 |
container_end_page | 310 |
container_issue | 1 |
container_start_page | 304 |
container_title | Biomacromolecules |
container_volume | 16 |
creator | Cingil, Hande E Rombouts, Wolf H van der Gucht, Jasper Cohen Stuart, Martien A Sprakel, Joris |
description | We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent. |
doi_str_mv | 10.1021/bm5015014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1654679785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1645228623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053</originalsourceid><addsrcrecordid>eNqN0LtOwzAUBmALgWgpDLwA8oIEQ8CXOJcRSilIhTKAGCPHF3BJ4tZOqPr2GFo6MSBZOh4-_TrnB-AYowuMCL4sa4ZwePEO6GNGkihOENn9-bMoTfO0Bw68nyGEchqzfdAjjOZpjkkfTEeLznzySjUtfOLt-5KvPDQNfFBVa5o3yBsJx6rirbENtBq-qqqKbpQ2jZLw2ti5rVa1cvBRtUvrPvwh2NO88upoMwfg5Xb0PLyLJtPx_fBqEnEaZ23EeKkopiRGUmKFyjynEsk0JQRpUUqRZiwTKEm4ZloIxALQZYlk8JhgxOgAnK1z584uOuXbojZehOV4o2znC5ywOAmXZ_-hMSMkSwgN9HxNhbPeO6WLuTM1d6sCo-K76mJbdbAnm9iurJXcyt9uAzhdAy58MbOda0IhfwR9ATkBg6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645228623</pqid></control><display><type>article</type><title>Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Cingil, Hande E ; Rombouts, Wolf H ; van der Gucht, Jasper ; Cohen Stuart, Martien A ; Sprakel, Joris</creator><creatorcontrib>Cingil, Hande E ; Rombouts, Wolf H ; van der Gucht, Jasper ; Cohen Stuart, Martien A ; Sprakel, Joris</creatorcontrib><description>We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm5015014</identifier><identifier>PMID: 25397912</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biopolymers - biosynthesis ; Biopolymers - chemistry ; Collagen - chemistry ; Freezing ; Models, Theoretical ; Pichia - genetics ; Pichia - metabolism ; Pichia pastoris ; Rheology ; Thermodynamics</subject><ispartof>Biomacromolecules, 2015-01, Vol.16 (1), p.304-310</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053</citedby><cites>FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25397912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cingil, Hande E</creatorcontrib><creatorcontrib>Rombouts, Wolf H</creatorcontrib><creatorcontrib>van der Gucht, Jasper</creatorcontrib><creatorcontrib>Cohen Stuart, Martien A</creatorcontrib><creatorcontrib>Sprakel, Joris</creatorcontrib><title>Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent.</description><subject>Biopolymers - biosynthesis</subject><subject>Biopolymers - chemistry</subject><subject>Collagen - chemistry</subject><subject>Freezing</subject><subject>Models, Theoretical</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Pichia pastoris</subject><subject>Rheology</subject><subject>Thermodynamics</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0LtOwzAUBmALgWgpDLwA8oIEQ8CXOJcRSilIhTKAGCPHF3BJ4tZOqPr2GFo6MSBZOh4-_TrnB-AYowuMCL4sa4ZwePEO6GNGkihOENn9-bMoTfO0Bw68nyGEchqzfdAjjOZpjkkfTEeLznzySjUtfOLt-5KvPDQNfFBVa5o3yBsJx6rirbENtBq-qqqKbpQ2jZLw2ti5rVa1cvBRtUvrPvwh2NO88upoMwfg5Xb0PLyLJtPx_fBqEnEaZ23EeKkopiRGUmKFyjynEsk0JQRpUUqRZiwTKEm4ZloIxALQZYlk8JhgxOgAnK1z584uOuXbojZehOV4o2znC5ywOAmXZ_-hMSMkSwgN9HxNhbPeO6WLuTM1d6sCo-K76mJbdbAnm9iurJXcyt9uAzhdAy58MbOda0IhfwR9ATkBg6U</recordid><startdate>20150112</startdate><enddate>20150112</enddate><creator>Cingil, Hande E</creator><creator>Rombouts, Wolf H</creator><creator>van der Gucht, Jasper</creator><creator>Cohen Stuart, Martien A</creator><creator>Sprakel, Joris</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20150112</creationdate><title>Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks</title><author>Cingil, Hande E ; Rombouts, Wolf H ; van der Gucht, Jasper ; Cohen Stuart, Martien A ; Sprakel, Joris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biopolymers - biosynthesis</topic><topic>Biopolymers - chemistry</topic><topic>Collagen - chemistry</topic><topic>Freezing</topic><topic>Models, Theoretical</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Pichia pastoris</topic><topic>Rheology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cingil, Hande E</creatorcontrib><creatorcontrib>Rombouts, Wolf H</creatorcontrib><creatorcontrib>van der Gucht, Jasper</creatorcontrib><creatorcontrib>Cohen Stuart, Martien A</creatorcontrib><creatorcontrib>Sprakel, Joris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cingil, Hande E</au><au>Rombouts, Wolf H</au><au>van der Gucht, Jasper</au><au>Cohen Stuart, Martien A</au><au>Sprakel, Joris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2015-01-12</date><risdate>2015</risdate><volume>16</volume><issue>1</issue><spage>304</spage><epage>310</epage><pages>304-310</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>We use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25397912</pmid><doi>10.1021/bm5015014</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2015-01, Vol.16 (1), p.304-310 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_proquest_miscellaneous_1654679785 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Biopolymers - biosynthesis Biopolymers - chemistry Collagen - chemistry Freezing Models, Theoretical Pichia - genetics Pichia - metabolism Pichia pastoris Rheology Thermodynamics |
title | Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalent%20Pathways%20in%20Melting%20and%20Gelation%20of%20Well-Defined%20Biopolymer%20Networks&rft.jtitle=Biomacromolecules&rft.au=Cingil,%20Hande%20E&rft.date=2015-01-12&rft.volume=16&rft.issue=1&rft.spage=304&rft.epage=310&rft.pages=304-310&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm5015014&rft_dat=%3Cproquest_cross%3E1645228623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-5abe313240dd1e0b993d0d77220fcbdc7858c066af5fcc05b99fbb0d40d121053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1645228623&rft_id=info:pmid/25397912&rfr_iscdi=true |