Loading…
BDC12-4.1 T-Cell Receptor Transgenic Insulin-Specific CD4 T Cells Are Resistant to In Vitro Differentiation into Functional Foxp3+ T Regulatory Cells: e112242
The infusion of ex vivo-expanded autologous T regulatory (Treg) cells is potentially an effective immunotherapeutic strategy against graft-versus-host disease (GvHD) and several autoimmune diseases, such as type 1 diabetes (T1D). However, in vitro differentiation of antigen-specific T cells into fun...
Saved in:
Published in: | PloS one 2014-01, Vol.9 (11) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The infusion of ex vivo-expanded autologous T regulatory (Treg) cells is potentially an effective immunotherapeutic strategy against graft-versus-host disease (GvHD) and several autoimmune diseases, such as type 1 diabetes (T1D). However, in vitro differentiation of antigen-specific T cells into functional and stable Treg (iTreg) cells has proved challenging. As insulin is the major autoantigen leading to T1D, we tested the capacity of insulin-specific T-cell receptor (TCR) transgenic CD4+ T cells of the BDC12-4.1 clone to convert into Foxp3+ iTreg cells. We found that in vitro polarization toward Foxp3+ iTreg was effective with a majority (>70%) of expanded cells expressing Foxp3. However, adoptive transfer of Foxp3+ BDC12-4.1 cells did not prevent diabetes onset in immunocompetent NOD mice. Thus, in vitro polarization of insulin-specific BDC12-4.1 TCR transgenic CD4+ T cells toward Foxp3+ cells did not provide dominant tolerance in recipient mice. These results highlight the disconnect between an in vitro acquired Foxp3+ cell phenotype and its associated in vivo regulatory potential. |
---|---|
ISSN: | 1932-6203 |
DOI: | 10.1371/journal.pone.0112242 |