Loading…

A bivalent conjugate vaccine containing PspA families 1 and 2 has the potential to protect against a wide range of Streptococcus pneumoniae strains and Salmonella Typhi

Abstract Previously we showed that conjugation of pneumococcal surface protein A (PspA) to Vi capsular polysaccharide from Salmonella Typhi enhanced the anti-PspA response without the need to add adjuvant. In the current study conjugates consisting of the α helical regions of PspA families 1 or 2 bo...

Full description

Saved in:
Bibliographic Details
Published in:Vaccine 2015-02, Vol.33 (6), p.783-788
Main Authors: Kothari, Neha, Kothari, Sudeep, Choi, Young Joo, Dey, Ayan, Briles, David E, Rhee, Dong Kwon, Carbis, Rodney
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Previously we showed that conjugation of pneumococcal surface protein A (PspA) to Vi capsular polysaccharide from Salmonella Typhi enhanced the anti-PspA response without the need to add adjuvant. In the current study conjugates consisting of the α helical regions of PspA families 1 or 2 bound to Vi were used to vaccinate mice to test their ability to protect against a lethal intravenous challenge of a range of various strains of Streptococcus pneumoniae . Conjugate vaccine containing PspA family 1 provided good protection from PspA family 1 challenge strains but offered very little protection against PspA family 2 challenge strains. Similarly, PspA family 2 conjugates provided good protection from PspA family 2 challenge strains and poor protection against PspA family 1 challenge strains. This observation was supported by the low levels of cross-reactivity of PspA antibodies seen in ELISA plates coated with the heterologous PspA family. Cytokine profiles showed a mixed Th1/Th2 response to Vi and the Vi-PspA conjugates. IgG subclass analysis of the anti-Vi response showed a shift from predominantly IgG2a/3 to IgG1 after conjugation to PspA was consistent with other polysaccharide conjugate vaccines. The results demonstrate that conjugation of the α helical region of PspA to Vi enhances its capacity to induce a protective immune response and that a vaccine based on the α helical region of PspA should contain PspA from both families 1 and 2 to achieve broad cross-protection.
ISSN:0264-410X
1873-2518
DOI:10.1016/j.vaccine.2014.12.032