Loading…

Late-orogenic basins in the Archaean Superior Province, Canada: characteristics and inferences

The late-orogenic Archaean Duparquet, Kirkland and Stormy basins of the Canadian Superior Province are characterized by bounding crustal-scale faults and abundant porphyry stock emplacement. Lava flows and pyroclastic deposits are restricted to the Kirkland and Stormy basins, and coarse clastic detr...

Full description

Saved in:
Bibliographic Details
Published in:Sedimentary geology 1998-09, Vol.120 (1), p.177-203
Main Authors: Mueller, W.U., Corcoran, P.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The late-orogenic Archaean Duparquet, Kirkland and Stormy basins of the Canadian Superior Province are characterized by bounding crustal-scale faults and abundant porphyry stock emplacement. Lava flows and pyroclastic deposits are restricted to the Kirkland and Stormy basins, and coarse clastic detritus characterizes the Duparquet basin. Seven distinct lithofacies are identified: (1) mafic volcanic, (2) felsic volcanic, (3) pyroclastic, (4) volcaniclastic, (5) conglomerate-sandstone, (6) sandstone-argillite (± conglomerate), and (7) argillite-sandstone (± tuffaceous sandstone). The mafic and felsic volcanic lithofacies represent effusive lava flows, the pyroclastic lithofacies is formed of subaerial surge and airfall deposits and the volcaniclastic lithofacies is composed of reworked volcanic debris. The conglomerate-sandstone lithofacies is interpreted as alluvial fan, fan delta or proximal braided stream deposits, whereas the sandstone-argillite lithofacies is consistent with sandy-dominated flood- or braidplain deposits. A dominantly shallow-water lacustrine setting is inferred for the argillite-sandstone lithofacies. These different lithofacies record the basin history and can be used to identify basin-forming processes. Lithofacies stacking and rapid lateral changes of lithological units in conjunction with interformational unconformities and basin margin faults suggest tectonically induced sedimentation. Volcanism can also influence basin evolution and the delicate balance between erosion, sedimentation, and prevalent transport processes is affected by volcanic input. Catastrophic influx of pyroclastic material facilitated mass-wasting processes and formation of non-confined hyperconcentrated flood flow deposits account for local congestion of alluvial or fluvial dispersal patterns. Confined stream flow processes govern sedimentation during intravolcanic phases or prominent tectonic uplift. In addition, climate which controls the weathering processes, and vegetation which stabilizes unconsolidated material, affects the transport and depositional process. A CO 2-rich aggressive weathering, humid Archaean atmosphere favours traction current deposits and an absence of vegetation promotes rapid denudation. Although tectonism is the prevalent long-term controlling factor in restricted basins, the effects of volcanism, climate and lack of vegetation can also be detected.
ISSN:0037-0738
1879-0968
DOI:10.1016/S0037-0738(98)00032-3