Loading…
Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus
The characteristics of Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM dl-malate and 7 mM l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a...
Saved in:
Published in: | Journal of fermentation and bioengineering 1998-01, Vol.85 (5), p.470-475 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53 |
container_end_page | 475 |
container_issue | 5 |
container_start_page | 470 |
container_title | Journal of fermentation and bioengineering |
container_volume | 85 |
creator | Ooshima, Hiroshi Takakuwa, Susumu Katsuda, Tomohisa Okuda, Masaki Shirasawa, Takeshi Azuma, Masayuki Kato, Jyoji |
description | The characteristics of
Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM
dl-malate and 7 mM
l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a specific hydrogen evolution rate of 0.14 ml/h/mg-dry cells was obtained at 6600 lx and 33°C. The evolution rate strongly depended on the light intensity: the higher the light intensity, the larger the evolution rate became up to at least 6600 lx.
R. capsulatus ST410 converted 60 mM malate to hydrogen at a yield of 68%, calculated as a percentage of the stoichiometric maximum for the complete conversion of the carbon source to H
2 and CO
2. On the other hand, when the wild strain was used under the same conditions, the yield was only 25%.
R. capsulatus ST410 converted not only malate but also glucose and cellobiose to hydrogen with good yields (60% for 30 mM glucose and 66% for 7.5 mM cellobiose). Ethanolamine was found to be a good nitrogen source, which permitted a large amount of hydrogen to be evolved and also depressed the cell growth to low levels. |
doi_str_mv | 10.1016/S0922-338X(98)80064-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16553008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0922338X98800640</els_id><sourcerecordid>16553008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53</originalsourceid><addsrcrecordid>eNqFkMtr3DAQh31oIck2f0LAh1LSg5vRy7ZOoYT0ERa65AG9ibEeuwpeayvZgf3vo32w154Gab6Z-fEVxRWBbwRIffMEktKKsfbvtWy_tgA1r-BDcX76PisuUnoFAAYUzovHRQxm0qMPQxlcudqaGJZ2KLttiacXJlsZ67z2dhjL9TRiLpl-XAUTOtSjjaXGTZp6HKf0qfjosE_28lhnxcuP--e7X9X8z8_fd9_nleaSjlUjZCugoUzQrhG8JUhk7RrmOiCECUDTOTCcipo3LWdaMOd4LR3WILg0gs2KL4e9mxj-TTaNau2Ttn2Pgw1TUqQWggG0GRQHUMeQUrRObaJfY9wqAmpnTe2tqZ0eJVu1t6Ygz30-HsCksXcRB-3TaZgyynOUjF0dMIdB4TJm5GFBpMxrcgCa-7eHvs0y3ryNKu1Eamt8tHpUJvj_BHkHM-aLkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16553008</pqid></control><display><type>article</type><title>Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ooshima, Hiroshi ; Takakuwa, Susumu ; Katsuda, Tomohisa ; Okuda, Masaki ; Shirasawa, Takeshi ; Azuma, Masayuki ; Kato, Jyoji</creator><creatorcontrib>Ooshima, Hiroshi ; Takakuwa, Susumu ; Katsuda, Tomohisa ; Okuda, Masaki ; Shirasawa, Takeshi ; Azuma, Masayuki ; Kato, Jyoji</creatorcontrib><description>The characteristics of
Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM
dl-malate and 7 mM
l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a specific hydrogen evolution rate of 0.14 ml/h/mg-dry cells was obtained at 6600 lx and 33°C. The evolution rate strongly depended on the light intensity: the higher the light intensity, the larger the evolution rate became up to at least 6600 lx.
R. capsulatus ST410 converted 60 mM malate to hydrogen at a yield of 68%, calculated as a percentage of the stoichiometric maximum for the complete conversion of the carbon source to H
2 and CO
2. On the other hand, when the wild strain was used under the same conditions, the yield was only 25%.
R. capsulatus ST410 converted not only malate but also glucose and cellobiose to hydrogen with good yields (60% for 30 mM glucose and 66% for 7.5 mM cellobiose). Ethanolamine was found to be a good nitrogen source, which permitted a large amount of hydrogen to be evolved and also depressed the cell growth to low levels.</description><identifier>ISSN: 0922-338X</identifier><identifier>DOI: 10.1016/S0922-338X(98)80064-0</identifier><identifier>CODEN: JFBIEX</identifier><language>eng</language><publisher>Osaka: Elsevier B.V</publisher><subject>BACTERIA ; Biological and medical sciences ; Biotechnology ; ENZIMAS ; ENZYME ; ENZYMES ; ethanolamine ; Fundamental and applied biological sciences. Psychology ; HIDROGENO ; HYDROGEN ; hydrogen production ; hydrogenase deficient mutant ; HYDROGENE ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; MUTANT ; MUTANTES ; MUTANTS ; Rhodobacter capsulatus</subject><ispartof>Journal of fermentation and bioengineering, 1998-01, Vol.85 (5), p.470-475</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53</citedby><cites>FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2324054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ooshima, Hiroshi</creatorcontrib><creatorcontrib>Takakuwa, Susumu</creatorcontrib><creatorcontrib>Katsuda, Tomohisa</creatorcontrib><creatorcontrib>Okuda, Masaki</creatorcontrib><creatorcontrib>Shirasawa, Takeshi</creatorcontrib><creatorcontrib>Azuma, Masayuki</creatorcontrib><creatorcontrib>Kato, Jyoji</creatorcontrib><title>Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus</title><title>Journal of fermentation and bioengineering</title><description>The characteristics of
Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM
dl-malate and 7 mM
l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a specific hydrogen evolution rate of 0.14 ml/h/mg-dry cells was obtained at 6600 lx and 33°C. The evolution rate strongly depended on the light intensity: the higher the light intensity, the larger the evolution rate became up to at least 6600 lx.
R. capsulatus ST410 converted 60 mM malate to hydrogen at a yield of 68%, calculated as a percentage of the stoichiometric maximum for the complete conversion of the carbon source to H
2 and CO
2. On the other hand, when the wild strain was used under the same conditions, the yield was only 25%.
R. capsulatus ST410 converted not only malate but also glucose and cellobiose to hydrogen with good yields (60% for 30 mM glucose and 66% for 7.5 mM cellobiose). Ethanolamine was found to be a good nitrogen source, which permitted a large amount of hydrogen to be evolved and also depressed the cell growth to low levels.</description><subject>BACTERIA</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>ENZIMAS</subject><subject>ENZYME</subject><subject>ENZYMES</subject><subject>ethanolamine</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>HIDROGENO</subject><subject>HYDROGEN</subject><subject>hydrogen production</subject><subject>hydrogenase deficient mutant</subject><subject>HYDROGENE</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Rhodobacter capsulatus</subject><issn>0922-338X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtr3DAQh31oIck2f0LAh1LSg5vRy7ZOoYT0ERa65AG9ibEeuwpeayvZgf3vo32w154Gab6Z-fEVxRWBbwRIffMEktKKsfbvtWy_tgA1r-BDcX76PisuUnoFAAYUzovHRQxm0qMPQxlcudqaGJZ2KLttiacXJlsZ67z2dhjL9TRiLpl-XAUTOtSjjaXGTZp6HKf0qfjosE_28lhnxcuP--e7X9X8z8_fd9_nleaSjlUjZCugoUzQrhG8JUhk7RrmOiCECUDTOTCcipo3LWdaMOd4LR3WILg0gs2KL4e9mxj-TTaNau2Ttn2Pgw1TUqQWggG0GRQHUMeQUrRObaJfY9wqAmpnTe2tqZ0eJVu1t6Ygz30-HsCksXcRB-3TaZgyynOUjF0dMIdB4TJm5GFBpMxrcgCa-7eHvs0y3ryNKu1Eamt8tHpUJvj_BHkHM-aLkA</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Ooshima, Hiroshi</creator><creator>Takakuwa, Susumu</creator><creator>Katsuda, Tomohisa</creator><creator>Okuda, Masaki</creator><creator>Shirasawa, Takeshi</creator><creator>Azuma, Masayuki</creator><creator>Kato, Jyoji</creator><general>Elsevier B.V</general><general>Society for Fermentation and Bioengineering</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19980101</creationdate><title>Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus</title><author>Ooshima, Hiroshi ; Takakuwa, Susumu ; Katsuda, Tomohisa ; Okuda, Masaki ; Shirasawa, Takeshi ; Azuma, Masayuki ; Kato, Jyoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>BACTERIA</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>ENZIMAS</topic><topic>ENZYME</topic><topic>ENZYMES</topic><topic>ethanolamine</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>HIDROGENO</topic><topic>HYDROGEN</topic><topic>hydrogen production</topic><topic>hydrogenase deficient mutant</topic><topic>HYDROGENE</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Rhodobacter capsulatus</topic><toplevel>online_resources</toplevel><creatorcontrib>Ooshima, Hiroshi</creatorcontrib><creatorcontrib>Takakuwa, Susumu</creatorcontrib><creatorcontrib>Katsuda, Tomohisa</creatorcontrib><creatorcontrib>Okuda, Masaki</creatorcontrib><creatorcontrib>Shirasawa, Takeshi</creatorcontrib><creatorcontrib>Azuma, Masayuki</creatorcontrib><creatorcontrib>Kato, Jyoji</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of fermentation and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooshima, Hiroshi</au><au>Takakuwa, Susumu</au><au>Katsuda, Tomohisa</au><au>Okuda, Masaki</au><au>Shirasawa, Takeshi</au><au>Azuma, Masayuki</au><au>Kato, Jyoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus</atitle><jtitle>Journal of fermentation and bioengineering</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>85</volume><issue>5</issue><spage>470</spage><epage>475</epage><pages>470-475</pages><issn>0922-338X</issn><coden>JFBIEX</coden><abstract>The characteristics of
Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM
dl-malate and 7 mM
l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a specific hydrogen evolution rate of 0.14 ml/h/mg-dry cells was obtained at 6600 lx and 33°C. The evolution rate strongly depended on the light intensity: the higher the light intensity, the larger the evolution rate became up to at least 6600 lx.
R. capsulatus ST410 converted 60 mM malate to hydrogen at a yield of 68%, calculated as a percentage of the stoichiometric maximum for the complete conversion of the carbon source to H
2 and CO
2. On the other hand, when the wild strain was used under the same conditions, the yield was only 25%.
R. capsulatus ST410 converted not only malate but also glucose and cellobiose to hydrogen with good yields (60% for 30 mM glucose and 66% for 7.5 mM cellobiose). Ethanolamine was found to be a good nitrogen source, which permitted a large amount of hydrogen to be evolved and also depressed the cell growth to low levels.</abstract><cop>Osaka</cop><pub>Elsevier B.V</pub><doi>10.1016/S0922-338X(98)80064-0</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0922-338X |
ispartof | Journal of fermentation and bioengineering, 1998-01, Vol.85 (5), p.470-475 |
issn | 0922-338X |
language | eng |
recordid | cdi_proquest_miscellaneous_16553008 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | BACTERIA Biological and medical sciences Biotechnology ENZIMAS ENZYME ENZYMES ethanolamine Fundamental and applied biological sciences. Psychology HIDROGENO HYDROGEN hydrogen production hydrogenase deficient mutant HYDROGENE Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology MUTANT MUTANTES MUTANTS Rhodobacter capsulatus |
title | Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20hydrogen%20by%20a%20hydrogenase-deficient%20mutant%20of%20Rhodobacter%20capsulatus&rft.jtitle=Journal%20of%20fermentation%20and%20bioengineering&rft.au=Ooshima,%20Hiroshi&rft.date=1998-01-01&rft.volume=85&rft.issue=5&rft.spage=470&rft.epage=475&rft.pages=470-475&rft.issn=0922-338X&rft.coden=JFBIEX&rft_id=info:doi/10.1016/S0922-338X(98)80064-0&rft_dat=%3Cproquest_cross%3E16553008%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16553008&rft_id=info:pmid/&rfr_iscdi=true |