Loading…

Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus

The characteristics of Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM dl-malate and 7 mM l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fermentation and bioengineering 1998-01, Vol.85 (5), p.470-475
Main Authors: Ooshima, Hiroshi, Takakuwa, Susumu, Katsuda, Tomohisa, Okuda, Masaki, Shirasawa, Takeshi, Azuma, Masayuki, Kato, Jyoji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53
cites cdi_FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53
container_end_page 475
container_issue 5
container_start_page 470
container_title Journal of fermentation and bioengineering
container_volume 85
creator Ooshima, Hiroshi
Takakuwa, Susumu
Katsuda, Tomohisa
Okuda, Masaki
Shirasawa, Takeshi
Azuma, Masayuki
Kato, Jyoji
description The characteristics of Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM dl-malate and 7 mM l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a specific hydrogen evolution rate of 0.14 ml/h/mg-dry cells was obtained at 6600 lx and 33°C. The evolution rate strongly depended on the light intensity: the higher the light intensity, the larger the evolution rate became up to at least 6600 lx. R. capsulatus ST410 converted 60 mM malate to hydrogen at a yield of 68%, calculated as a percentage of the stoichiometric maximum for the complete conversion of the carbon source to H 2 and CO 2. On the other hand, when the wild strain was used under the same conditions, the yield was only 25%. R. capsulatus ST410 converted not only malate but also glucose and cellobiose to hydrogen with good yields (60% for 30 mM glucose and 66% for 7.5 mM cellobiose). Ethanolamine was found to be a good nitrogen source, which permitted a large amount of hydrogen to be evolved and also depressed the cell growth to low levels.
doi_str_mv 10.1016/S0922-338X(98)80064-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16553008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0922338X98800640</els_id><sourcerecordid>16553008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53</originalsourceid><addsrcrecordid>eNqFkMtr3DAQh31oIck2f0LAh1LSg5vRy7ZOoYT0ERa65AG9ibEeuwpeayvZgf3vo32w154Gab6Z-fEVxRWBbwRIffMEktKKsfbvtWy_tgA1r-BDcX76PisuUnoFAAYUzovHRQxm0qMPQxlcudqaGJZ2KLttiacXJlsZ67z2dhjL9TRiLpl-XAUTOtSjjaXGTZp6HKf0qfjosE_28lhnxcuP--e7X9X8z8_fd9_nleaSjlUjZCugoUzQrhG8JUhk7RrmOiCECUDTOTCcipo3LWdaMOd4LR3WILg0gs2KL4e9mxj-TTaNau2Ttn2Pgw1TUqQWggG0GRQHUMeQUrRObaJfY9wqAmpnTe2tqZ0eJVu1t6Ygz30-HsCksXcRB-3TaZgyynOUjF0dMIdB4TJm5GFBpMxrcgCa-7eHvs0y3ryNKu1Eamt8tHpUJvj_BHkHM-aLkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16553008</pqid></control><display><type>article</type><title>Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ooshima, Hiroshi ; Takakuwa, Susumu ; Katsuda, Tomohisa ; Okuda, Masaki ; Shirasawa, Takeshi ; Azuma, Masayuki ; Kato, Jyoji</creator><creatorcontrib>Ooshima, Hiroshi ; Takakuwa, Susumu ; Katsuda, Tomohisa ; Okuda, Masaki ; Shirasawa, Takeshi ; Azuma, Masayuki ; Kato, Jyoji</creatorcontrib><description>The characteristics of Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM dl-malate and 7 mM l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a specific hydrogen evolution rate of 0.14 ml/h/mg-dry cells was obtained at 6600 lx and 33°C. The evolution rate strongly depended on the light intensity: the higher the light intensity, the larger the evolution rate became up to at least 6600 lx. R. capsulatus ST410 converted 60 mM malate to hydrogen at a yield of 68%, calculated as a percentage of the stoichiometric maximum for the complete conversion of the carbon source to H 2 and CO 2. On the other hand, when the wild strain was used under the same conditions, the yield was only 25%. R. capsulatus ST410 converted not only malate but also glucose and cellobiose to hydrogen with good yields (60% for 30 mM glucose and 66% for 7.5 mM cellobiose). Ethanolamine was found to be a good nitrogen source, which permitted a large amount of hydrogen to be evolved and also depressed the cell growth to low levels.</description><identifier>ISSN: 0922-338X</identifier><identifier>DOI: 10.1016/S0922-338X(98)80064-0</identifier><identifier>CODEN: JFBIEX</identifier><language>eng</language><publisher>Osaka: Elsevier B.V</publisher><subject>BACTERIA ; Biological and medical sciences ; Biotechnology ; ENZIMAS ; ENZYME ; ENZYMES ; ethanolamine ; Fundamental and applied biological sciences. Psychology ; HIDROGENO ; HYDROGEN ; hydrogen production ; hydrogenase deficient mutant ; HYDROGENE ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; MUTANT ; MUTANTES ; MUTANTS ; Rhodobacter capsulatus</subject><ispartof>Journal of fermentation and bioengineering, 1998-01, Vol.85 (5), p.470-475</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53</citedby><cites>FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2324054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ooshima, Hiroshi</creatorcontrib><creatorcontrib>Takakuwa, Susumu</creatorcontrib><creatorcontrib>Katsuda, Tomohisa</creatorcontrib><creatorcontrib>Okuda, Masaki</creatorcontrib><creatorcontrib>Shirasawa, Takeshi</creatorcontrib><creatorcontrib>Azuma, Masayuki</creatorcontrib><creatorcontrib>Kato, Jyoji</creatorcontrib><title>Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus</title><title>Journal of fermentation and bioengineering</title><description>The characteristics of Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM dl-malate and 7 mM l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a specific hydrogen evolution rate of 0.14 ml/h/mg-dry cells was obtained at 6600 lx and 33°C. The evolution rate strongly depended on the light intensity: the higher the light intensity, the larger the evolution rate became up to at least 6600 lx. R. capsulatus ST410 converted 60 mM malate to hydrogen at a yield of 68%, calculated as a percentage of the stoichiometric maximum for the complete conversion of the carbon source to H 2 and CO 2. On the other hand, when the wild strain was used under the same conditions, the yield was only 25%. R. capsulatus ST410 converted not only malate but also glucose and cellobiose to hydrogen with good yields (60% for 30 mM glucose and 66% for 7.5 mM cellobiose). Ethanolamine was found to be a good nitrogen source, which permitted a large amount of hydrogen to be evolved and also depressed the cell growth to low levels.</description><subject>BACTERIA</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>ENZIMAS</subject><subject>ENZYME</subject><subject>ENZYMES</subject><subject>ethanolamine</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>HIDROGENO</subject><subject>HYDROGEN</subject><subject>hydrogen production</subject><subject>hydrogenase deficient mutant</subject><subject>HYDROGENE</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Rhodobacter capsulatus</subject><issn>0922-338X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtr3DAQh31oIck2f0LAh1LSg5vRy7ZOoYT0ERa65AG9ibEeuwpeayvZgf3vo32w154Gab6Z-fEVxRWBbwRIffMEktKKsfbvtWy_tgA1r-BDcX76PisuUnoFAAYUzovHRQxm0qMPQxlcudqaGJZ2KLttiacXJlsZ67z2dhjL9TRiLpl-XAUTOtSjjaXGTZp6HKf0qfjosE_28lhnxcuP--e7X9X8z8_fd9_nleaSjlUjZCugoUzQrhG8JUhk7RrmOiCECUDTOTCcipo3LWdaMOd4LR3WILg0gs2KL4e9mxj-TTaNau2Ttn2Pgw1TUqQWggG0GRQHUMeQUrRObaJfY9wqAmpnTe2tqZ0eJVu1t6Ygz30-HsCksXcRB-3TaZgyynOUjF0dMIdB4TJm5GFBpMxrcgCa-7eHvs0y3ryNKu1Eamt8tHpUJvj_BHkHM-aLkA</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Ooshima, Hiroshi</creator><creator>Takakuwa, Susumu</creator><creator>Katsuda, Tomohisa</creator><creator>Okuda, Masaki</creator><creator>Shirasawa, Takeshi</creator><creator>Azuma, Masayuki</creator><creator>Kato, Jyoji</creator><general>Elsevier B.V</general><general>Society for Fermentation and Bioengineering</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19980101</creationdate><title>Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus</title><author>Ooshima, Hiroshi ; Takakuwa, Susumu ; Katsuda, Tomohisa ; Okuda, Masaki ; Shirasawa, Takeshi ; Azuma, Masayuki ; Kato, Jyoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>BACTERIA</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>ENZIMAS</topic><topic>ENZYME</topic><topic>ENZYMES</topic><topic>ethanolamine</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>HIDROGENO</topic><topic>HYDROGEN</topic><topic>hydrogen production</topic><topic>hydrogenase deficient mutant</topic><topic>HYDROGENE</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Rhodobacter capsulatus</topic><toplevel>online_resources</toplevel><creatorcontrib>Ooshima, Hiroshi</creatorcontrib><creatorcontrib>Takakuwa, Susumu</creatorcontrib><creatorcontrib>Katsuda, Tomohisa</creatorcontrib><creatorcontrib>Okuda, Masaki</creatorcontrib><creatorcontrib>Shirasawa, Takeshi</creatorcontrib><creatorcontrib>Azuma, Masayuki</creatorcontrib><creatorcontrib>Kato, Jyoji</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of fermentation and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooshima, Hiroshi</au><au>Takakuwa, Susumu</au><au>Katsuda, Tomohisa</au><au>Okuda, Masaki</au><au>Shirasawa, Takeshi</au><au>Azuma, Masayuki</au><au>Kato, Jyoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus</atitle><jtitle>Journal of fermentation and bioengineering</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>85</volume><issue>5</issue><spage>470</spage><epage>475</epage><pages>470-475</pages><issn>0922-338X</issn><coden>JFBIEX</coden><abstract>The characteristics of Rhodobacter capsulatus ST410, a mutant of the wild strain B100 lacking hydrogenase activity, were investigated from the viewpoint of hydrogen production. When 30 mM dl-malate and 7 mM l-glutamate were used as carbon and nitrogen sources, respectively, in an argon atmosphere, a specific hydrogen evolution rate of 0.14 ml/h/mg-dry cells was obtained at 6600 lx and 33°C. The evolution rate strongly depended on the light intensity: the higher the light intensity, the larger the evolution rate became up to at least 6600 lx. R. capsulatus ST410 converted 60 mM malate to hydrogen at a yield of 68%, calculated as a percentage of the stoichiometric maximum for the complete conversion of the carbon source to H 2 and CO 2. On the other hand, when the wild strain was used under the same conditions, the yield was only 25%. R. capsulatus ST410 converted not only malate but also glucose and cellobiose to hydrogen with good yields (60% for 30 mM glucose and 66% for 7.5 mM cellobiose). Ethanolamine was found to be a good nitrogen source, which permitted a large amount of hydrogen to be evolved and also depressed the cell growth to low levels.</abstract><cop>Osaka</cop><pub>Elsevier B.V</pub><doi>10.1016/S0922-338X(98)80064-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0922-338X
ispartof Journal of fermentation and bioengineering, 1998-01, Vol.85 (5), p.470-475
issn 0922-338X
language eng
recordid cdi_proquest_miscellaneous_16553008
source ScienceDirect Freedom Collection 2022-2024
subjects BACTERIA
Biological and medical sciences
Biotechnology
ENZIMAS
ENZYME
ENZYMES
ethanolamine
Fundamental and applied biological sciences. Psychology
HIDROGENO
HYDROGEN
hydrogen production
hydrogenase deficient mutant
HYDROGENE
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
MUTANT
MUTANTES
MUTANTS
Rhodobacter capsulatus
title Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20hydrogen%20by%20a%20hydrogenase-deficient%20mutant%20of%20Rhodobacter%20capsulatus&rft.jtitle=Journal%20of%20fermentation%20and%20bioengineering&rft.au=Ooshima,%20Hiroshi&rft.date=1998-01-01&rft.volume=85&rft.issue=5&rft.spage=470&rft.epage=475&rft.pages=470-475&rft.issn=0922-338X&rft.coden=JFBIEX&rft_id=info:doi/10.1016/S0922-338X(98)80064-0&rft_dat=%3Cproquest_cross%3E16553008%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-75985072352b75481a196f73fb011350adbf0d425647843c53ff469fa60549d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16553008&rft_id=info:pmid/&rfr_iscdi=true