Loading…

Dominant transposition-deficient mutants of maize Activator (Ac) transposase

The maize transposable element Activator (Ac) encodes a transposase (TPase) protein, whose DNA-binding domain is located in a basic region around aa 200. The N-terminal 102 aa of the TPase are not required for the transposition reaction. In transfected petunia protoplasts, we analyzed the protein le...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1993-08, Vol.90 (15), p.7094-7098
Main Authors: Kunze, R, Behrens, U, Courage-Franzkowiak, U, Feldmar, S, Kuhn, S, Lutticke, R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The maize transposable element Activator (Ac) encodes a transposase (TPase) protein, whose DNA-binding domain is located in a basic region around aa 200. The N-terminal 102 aa of the TPase are not required for the transposition reaction. In transfected petunia protoplasts, we analyzed the protein levels of the N-terminally truncated TPase and mutants thereof and the corresponding transposition frequencies. The TPase protein forms large insoluble aggregates at high expression levels. There is no proportionality observed between TPase levels and transposition frequency. Twenty-one mutations (of 26), which are distributed over the whole length of the protein, inactivate the TPase completely. By coexpressing inactive mutant and active truncated TPase, it was found that several mutations have a trans-dominant inhibitory effect. Among those are two DNA-binding-deficient mutants, indicating that inhibition of the active TPase is not caused by competition for the binding sites on the transposon. Accordingly, Ac TPase acts as an oligo- or multimer formed by protein-protein interactions. Peculiarly, two mutants lacking 53 and 98 aa from the C terminus that are themselves transpositionally inactive lead to an increased excision frequency when they are coexpressed with the active truncated TPase.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.90.15.7094