Loading…
Ionic Liquids as Plasticizers for Polyelectrolyte Complexes
Uptake of salts by insoluble polyelectrolyte complexes (PECs) leads to plasticization, and here it is shown that ionic liquids (ILs) are more effective plasticizers than simple organic salts such as NaCl. The PEC uptake of IL cation was monitored by solution 1H NMR, and the mechanical impacts of pla...
Saved in:
Published in: | The journal of physical chemistry. B 2015-02, Vol.119 (8), p.3603-3607 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Uptake of salts by insoluble polyelectrolyte complexes (PECs) leads to plasticization, and here it is shown that ionic liquids (ILs) are more effective plasticizers than simple organic salts such as NaCl. The PEC uptake of IL cation was monitored by solution 1H NMR, and the mechanical impacts of plasticization were tracked by dynamic mechanical analysis (DMA). PECs prepared with polystyrene sulfonate (PSS) and poly(diallyldimethylammonium chloride) (PDDA) under charge stoichiometric conditions were immersed in aqueous solutions of 1-butyl-3-methylimidazolium chloride [BMIM][Cl] to cause IL uptake, which could be controlled by the solution’s IL concentration: higher concentration leads to higher uptake which leads to greater plasticization. The effectiveness of plasticization was assessed through the position and height of a DMA tan(δ) peak ascribed to a glassy-to-rubbery PEC transition. Consistent with greater PEC uptake, isothermal titration calorimetry demonstrated that solution binding by PSS of [BMIM]+ was much stronger than binding of Na+. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp5128354 |