Loading…

Silver nanoparticles supported on passivated silica: preparation and catalytic performance in alkyne semi-hydrogenation

Herein, we report the preparation of small and narrowly distributed (2.1 ± 0.5 nm) Ag nanoparticles supported on passivated silica, where the surface OH groups are replaced by OSiMe3 functionalities. This synthetic method involves the grafting of silver(I) bis(trimethylsilyl)amide ([AgN(SiMe3)2]4) o...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2014-10, Vol.43 (40), p.15138-15142
Main Authors: Oakton, Emma, Vilé, Gianvito, Levine, Daniel S, Zocher, Eva, Baudouin, David, Pérez-Ramírez, Javier, Copéret, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, we report the preparation of small and narrowly distributed (2.1 ± 0.5 nm) Ag nanoparticles supported on passivated silica, where the surface OH groups are replaced by OSiMe3 functionalities. This synthetic method involves the grafting of silver(I) bis(trimethylsilyl)amide ([AgN(SiMe3)2]4) on silica partially dehydroxylated at 700 °C, followed by a thermal treatment of the grafted complex under H2. The catalytic performance of this material was investigated in the semi-hydrogenation of propyne and 1-hexyne and compared with that of 2.0 ± 0.3 nm Ag nanoparticles supported on silica. Whilst surface passivation slightly decreases the activity in both reactions (by a factor 2-3), probably as a result of the decreased alkyne adsorption properties or the presence of less accessible active sites on the passivated support, the AgNP@SiO2 catalysts demonstrate a remarkable selectivity for the production of alkenes.
ISSN:1477-9226
1477-9234
DOI:10.1039/c4dt01320d