Loading…

Conservation laws and non-decaying solutions for the Benney-Luke equation

A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to deter...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2013-04, Vol.469 (2152), p.20120690-20120690
Main Authors: Ablowitz, Mark J., Curtis, Christopher W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23
cites cdi_FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23
container_end_page 20120690
container_issue 2152
container_start_page 20120690
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 469
creator Ablowitz, Mark J.
Curtis, Christopher W.
description A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied.
doi_str_mv 10.1098/rspa.2012.0690
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660042551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660042551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYso-Ny67tJNx7zbLnXwBSMOPsFNyDS3GqcmY9Kq9dfbTkUQ0VVuuOc7l3OiaBejEUZ5tu_DQo0IwmSERI5Wog3MUpyQnInVbqaCJRwRvB5thvCEEMp5lm5EZ2NnA_hXVRtn40q9hVhZHVtnEw2Fao19iIOrmn4d4tL5uH6E-BCshTaZNHOI4aVZwtvRWqmqADtf71Z0c3x0PT5NJhcnZ-ODSVJwgeqkFHqWAlIal4hkgs2U1kqls7zAQmlSlDlkhHFCMaW8BFFSjTOWE51RzIsZoVvR3uC78O6lgVDLZxMKqCplwTVBYiEQYoRz3ElHg7TwLgQPpVx486x8KzGSfWey70z2ncm-sw6gA-Bd22VwhYG6lU-u8bb7_k3N_6Mur6YHr0zkhmDeEV0OlGLOM_lhFoNVt5QmhAbkUvLT_ve1ZLhmQg3v34mUn0uR0pTL24zJ6f3h1eXpHZHn9BMpIKP-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660042551</pqid></control><display><type>article</type><title>Conservation laws and non-decaying solutions for the Benney-Luke equation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Ablowitz, Mark J. ; Curtis, Christopher W.</creator><creatorcontrib>Ablowitz, Mark J. ; Curtis, Christopher W.</creatorcontrib><description>A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2012.0690</identifier><language>eng</language><publisher>The Royal Society Publishing</publisher><subject>Approximation ; Asymptotics ; Benney-Luke Equation ; Computer simulation ; Conservation Laws ; Dissipation ; Evolution ; Kadomtsev-Petviashvili Equation ; Mathematical analysis ; Mathematical models ; Nonlinear Waves ; Perturbation methods ; Web Solutions</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2013-04, Vol.469 (2152), p.20120690-20120690</ispartof><rights>2013 The Author(s) Published by the Royal Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23</citedby><cites>FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Ablowitz, Mark J.</creatorcontrib><creatorcontrib>Curtis, Christopher W.</creatorcontrib><title>Conservation laws and non-decaying solutions for the Benney-Luke equation</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied.</description><subject>Approximation</subject><subject>Asymptotics</subject><subject>Benney-Luke Equation</subject><subject>Computer simulation</subject><subject>Conservation Laws</subject><subject>Dissipation</subject><subject>Evolution</subject><subject>Kadomtsev-Petviashvili Equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear Waves</subject><subject>Perturbation methods</subject><subject>Web Solutions</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYso-Ny67tJNx7zbLnXwBSMOPsFNyDS3GqcmY9Kq9dfbTkUQ0VVuuOc7l3OiaBejEUZ5tu_DQo0IwmSERI5Wog3MUpyQnInVbqaCJRwRvB5thvCEEMp5lm5EZ2NnA_hXVRtn40q9hVhZHVtnEw2Fao19iIOrmn4d4tL5uH6E-BCshTaZNHOI4aVZwtvRWqmqADtf71Z0c3x0PT5NJhcnZ-ODSVJwgeqkFHqWAlIal4hkgs2U1kqls7zAQmlSlDlkhHFCMaW8BFFSjTOWE51RzIsZoVvR3uC78O6lgVDLZxMKqCplwTVBYiEQYoRz3ElHg7TwLgQPpVx486x8KzGSfWey70z2ncm-sw6gA-Bd22VwhYG6lU-u8bb7_k3N_6Mur6YHr0zkhmDeEV0OlGLOM_lhFoNVt5QmhAbkUvLT_ve1ZLhmQg3v34mUn0uR0pTL24zJ6f3h1eXpHZHn9BMpIKP-</recordid><startdate>20130408</startdate><enddate>20130408</enddate><creator>Ablowitz, Mark J.</creator><creator>Curtis, Christopher W.</creator><general>The Royal Society Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130408</creationdate><title>Conservation laws and non-decaying solutions for the Benney-Luke equation</title><author>Ablowitz, Mark J. ; Curtis, Christopher W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Asymptotics</topic><topic>Benney-Luke Equation</topic><topic>Computer simulation</topic><topic>Conservation Laws</topic><topic>Dissipation</topic><topic>Evolution</topic><topic>Kadomtsev-Petviashvili Equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear Waves</topic><topic>Perturbation methods</topic><topic>Web Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ablowitz, Mark J.</creatorcontrib><creatorcontrib>Curtis, Christopher W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ablowitz, Mark J.</au><au>Curtis, Christopher W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation laws and non-decaying solutions for the Benney-Luke equation</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2013-04-08</date><risdate>2013</risdate><volume>469</volume><issue>2152</issue><spage>20120690</spage><epage>20120690</epage><pages>20120690-20120690</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied.</abstract><pub>The Royal Society Publishing</pub><doi>10.1098/rspa.2012.0690</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2013-04, Vol.469 (2152), p.20120690-20120690
issn 1364-5021
1471-2946
language eng
recordid cdi_proquest_miscellaneous_1660042551
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Approximation
Asymptotics
Benney-Luke Equation
Computer simulation
Conservation Laws
Dissipation
Evolution
Kadomtsev-Petviashvili Equation
Mathematical analysis
Mathematical models
Nonlinear Waves
Perturbation methods
Web Solutions
title Conservation laws and non-decaying solutions for the Benney-Luke equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20laws%20and%20non-decaying%20solutions%20for%20the%20Benney-Luke%20equation&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ablowitz,%20Mark%20J.&rft.date=2013-04-08&rft.volume=469&rft.issue=2152&rft.spage=20120690&rft.epage=20120690&rft.pages=20120690-20120690&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2012.0690&rft_dat=%3Cproquest_cross%3E1660042551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660042551&rft_id=info:pmid/&rfr_iscdi=true