Loading…
Conservation laws and non-decaying solutions for the Benney-Luke equation
A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to deter...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2013-04, Vol.469 (2152), p.20120690-20120690 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23 |
container_end_page | 20120690 |
container_issue | 2152 |
container_start_page | 20120690 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 469 |
creator | Ablowitz, Mark J. Curtis, Christopher W. |
description | A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied. |
doi_str_mv | 10.1098/rspa.2012.0690 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660042551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660042551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYso-Ny67tJNx7zbLnXwBSMOPsFNyDS3GqcmY9Kq9dfbTkUQ0VVuuOc7l3OiaBejEUZ5tu_DQo0IwmSERI5Wog3MUpyQnInVbqaCJRwRvB5thvCEEMp5lm5EZ2NnA_hXVRtn40q9hVhZHVtnEw2Fao19iIOrmn4d4tL5uH6E-BCshTaZNHOI4aVZwtvRWqmqADtf71Z0c3x0PT5NJhcnZ-ODSVJwgeqkFHqWAlIal4hkgs2U1kqls7zAQmlSlDlkhHFCMaW8BFFSjTOWE51RzIsZoVvR3uC78O6lgVDLZxMKqCplwTVBYiEQYoRz3ElHg7TwLgQPpVx486x8KzGSfWey70z2ncm-sw6gA-Bd22VwhYG6lU-u8bb7_k3N_6Mur6YHr0zkhmDeEV0OlGLOM_lhFoNVt5QmhAbkUvLT_ve1ZLhmQg3v34mUn0uR0pTL24zJ6f3h1eXpHZHn9BMpIKP-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660042551</pqid></control><display><type>article</type><title>Conservation laws and non-decaying solutions for the Benney-Luke equation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Ablowitz, Mark J. ; Curtis, Christopher W.</creator><creatorcontrib>Ablowitz, Mark J. ; Curtis, Christopher W.</creatorcontrib><description>A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2012.0690</identifier><language>eng</language><publisher>The Royal Society Publishing</publisher><subject>Approximation ; Asymptotics ; Benney-Luke Equation ; Computer simulation ; Conservation Laws ; Dissipation ; Evolution ; Kadomtsev-Petviashvili Equation ; Mathematical analysis ; Mathematical models ; Nonlinear Waves ; Perturbation methods ; Web Solutions</subject><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2013-04, Vol.469 (2152), p.20120690-20120690</ispartof><rights>2013 The Author(s) Published by the Royal Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23</citedby><cites>FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Ablowitz, Mark J.</creatorcontrib><creatorcontrib>Curtis, Christopher W.</creatorcontrib><title>Conservation laws and non-decaying solutions for the Benney-Luke equation</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc. R. Soc. A</addtitle><addtitle>Proc. R. Soc. A</addtitle><description>A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied.</description><subject>Approximation</subject><subject>Asymptotics</subject><subject>Benney-Luke Equation</subject><subject>Computer simulation</subject><subject>Conservation Laws</subject><subject>Dissipation</subject><subject>Evolution</subject><subject>Kadomtsev-Petviashvili Equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear Waves</subject><subject>Perturbation methods</subject><subject>Web Solutions</subject><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYso-Ny67tJNx7zbLnXwBSMOPsFNyDS3GqcmY9Kq9dfbTkUQ0VVuuOc7l3OiaBejEUZ5tu_DQo0IwmSERI5Wog3MUpyQnInVbqaCJRwRvB5thvCEEMp5lm5EZ2NnA_hXVRtn40q9hVhZHVtnEw2Fao19iIOrmn4d4tL5uH6E-BCshTaZNHOI4aVZwtvRWqmqADtf71Z0c3x0PT5NJhcnZ-ODSVJwgeqkFHqWAlIal4hkgs2U1kqls7zAQmlSlDlkhHFCMaW8BFFSjTOWE51RzIsZoVvR3uC78O6lgVDLZxMKqCplwTVBYiEQYoRz3ElHg7TwLgQPpVx486x8KzGSfWey70z2ncm-sw6gA-Bd22VwhYG6lU-u8bb7_k3N_6Mur6YHr0zkhmDeEV0OlGLOM_lhFoNVt5QmhAbkUvLT_ve1ZLhmQg3v34mUn0uR0pTL24zJ6f3h1eXpHZHn9BMpIKP-</recordid><startdate>20130408</startdate><enddate>20130408</enddate><creator>Ablowitz, Mark J.</creator><creator>Curtis, Christopher W.</creator><general>The Royal Society Publishing</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130408</creationdate><title>Conservation laws and non-decaying solutions for the Benney-Luke equation</title><author>Ablowitz, Mark J. ; Curtis, Christopher W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Asymptotics</topic><topic>Benney-Luke Equation</topic><topic>Computer simulation</topic><topic>Conservation Laws</topic><topic>Dissipation</topic><topic>Evolution</topic><topic>Kadomtsev-Petviashvili Equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear Waves</topic><topic>Perturbation methods</topic><topic>Web Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ablowitz, Mark J.</creatorcontrib><creatorcontrib>Curtis, Christopher W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ablowitz, Mark J.</au><au>Curtis, Christopher W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation laws and non-decaying solutions for the Benney-Luke equation</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><stitle>Proc. R. Soc. A</stitle><addtitle>Proc. R. Soc. A</addtitle><date>2013-04-08</date><risdate>2013</risdate><volume>469</volume><issue>2152</issue><spage>20120690</spage><epage>20120690</epage><pages>20120690-20120690</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A long wave multi-dimensional approximation of shallow-water waves is the bi-directional Benney-Luke (BL) equation. It yields the well-known Kadomtsev-Petviashvili (KP) equation in a quasi one-directional limit. A direct perturbation method is developed; it uses underlying conservation laws to determine the slow evolution of parameters of two space-dimensional, non-decaying solutions to the BL equation. These non-decaying solutions are perturbations of recently studied web solutions of the KP equation. New numerical simulations, based on windowing methods which are effective for non-decaying data, are presented. These simulations support the analytical results and elucidate the relationship between the KP and the BL equations and are also used to obtain amplitude information regarding particular web solutions. Additional dissipative perturbations to the BL equation are also studied.</abstract><pub>The Royal Society Publishing</pub><doi>10.1098/rspa.2012.0690</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2013-04, Vol.469 (2152), p.20120690-20120690 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660042551 |
source | JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Approximation Asymptotics Benney-Luke Equation Computer simulation Conservation Laws Dissipation Evolution Kadomtsev-Petviashvili Equation Mathematical analysis Mathematical models Nonlinear Waves Perturbation methods Web Solutions |
title | Conservation laws and non-decaying solutions for the Benney-Luke equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20laws%20and%20non-decaying%20solutions%20for%20the%20Benney-Luke%20equation&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ablowitz,%20Mark%20J.&rft.date=2013-04-08&rft.volume=469&rft.issue=2152&rft.spage=20120690&rft.epage=20120690&rft.pages=20120690-20120690&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2012.0690&rft_dat=%3Cproquest_cross%3E1660042551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-f6db7e0ad1f02864baddaa7b9c16ad2cf9e8245231335fe6f3d18492d8315cb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660042551&rft_id=info:pmid/&rfr_iscdi=true |