Loading…
Transformations of citrate and Tween coated silver nanoparticles reacted with Na2S
Silver nanoparticles (Ag NPs) are susceptible to transformations in environmental and biological media such as aggregation, oxidation, dissolution, chlorination, sulfidation, formation/replacement of surface coatings following interaction with natural organic matter (NOM). This paper investigates th...
Saved in:
Published in: | The Science of the total environment 2015-01, Vol.502, p.344-353 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silver nanoparticles (Ag NPs) are susceptible to transformations in environmental and biological media such as aggregation, oxidation, dissolution, chlorination, sulfidation, formation/replacement of surface coatings following interaction with natural organic matter (NOM). This paper investigates the impact of surface coating and Suwannee River fulvic acid (SRFA) on the transformations and behavior of Ag NPs (citrate coated and Tween coated; cit-Ag NPs and Tween-Ag NPs, respectively), following reaction with different concentrations of Na2S solution (as a source of sulfide species, H2S and HS−). These transformations and the dominant mechanisms of transformations were investigated using UV–vis and scanning transmission electron microscopy coupled with electron energy loss spectroscopy.
Here, we have shown that Ag NP surface coating impacts their dissolution following dilution in ultrahigh purity water, with higher extent of dissolution of Tween-Ag NPs compared with cit-Ag NPs. Tween-Ag NPs are susceptible to dissolution following their sulfidation at low S/Ag molar ratio. Suwannee River fulvic acid (SRFA) slows down the dissolution of Tween-Ag NPs at low sulfide concentrations and reduces the aggregation of cit-Ag NP in the presence of sodium sulfide. Sulfidation appears to occur by direct interaction of sulfide species with Ag NPs rather than by indirect reaction of sulfide with dissolved Ag species subsequent to dissolution. Furthermore, the sulfidation process results in the formation of partially sulfidized Ag NPs containing unreacted (metallic) subgrains at the edge of the NPs for Tween-Ag NPs in the presence of high sulfide concentration (2000nM Na2S), which occurred to less extent at lower Na2S concentration for Tween-Ag NPs and at all concentrations of Na2S for cit-Ag NPs. Thus, sulfidized Ag NPs may preserve some of the properties of the Ag NPs such as their potential to shed Ag+ ions and their toxic potential of Ag NPs.
Ag NPs may preserve some of the original properties of Ag0 even following sulfidation [Display omitted] |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2014.09.035 |