Loading…

Trade-off between water pollution prevention, agriculture profit, and farmer practice—an optimization methodology for discussion on land-use adjustment in China

Agricultural decision-making to control nonpoint source (NPS) water pollution may not be efficiently implemented, if there is no appropriate cost-benefit analysis on agricultural management practices. This paper presents an interval-fuzzy linear programming (IFLP) model to deal with the trade-off be...

Full description

Saved in:
Bibliographic Details
Published in:Environmental monitoring and assessment 2015-01, Vol.187 (1), p.4104-13, Article 4104
Main Authors: Jianchang, Liu, Luoping, Zhang, Yuzhen, Zhang, Hongbing, Deng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Agricultural decision-making to control nonpoint source (NPS) water pollution may not be efficiently implemented, if there is no appropriate cost-benefit analysis on agricultural management practices. This paper presents an interval-fuzzy linear programming (IFLP) model to deal with the trade-off between agricultural revenue, NPS pollution control, and alternative practices through land adjustment for Wuchuan catchment, a typical agricultural area in Jiulong River watershed, Fujian Province of China. From the results, the lower combination of practice 1, practice 2, practice 3, and practice 7 with the land area of 12.6, 5.2, 145.2, and 85.3 hm², respectively, could reduce NPS pollution load by 10 %. The combination yields an income of 98,580 Chinese Yuan/a. If the pollution reduction is 15 %, the higher combination need practice 1, practice 2, practice 3, practice 5, and practice 7 with the land area of 54.4, 23.6, 18.0, 6.3, and 85.3 hm², respectively. The income of this combination is 915,170 Chinese Yuan/a. The sensitivity analysis of IFLP indicates that the cost-effective practices are ranked as follows: practice 7 > practice 2 > practice 1 > practice 5 > practice 3 > practice 6 > practice 4. In addition, the uncertainties in the agriculture NPS pollution control system could be effectively quantified by the IFLP model. Furthermore, to accomplish a reasonable and applicable project of land-use adjustment, decision-makers could also integrate above solutions with their own experience and other information.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-014-4104-z