Loading…

Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent

This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) 2013-10, Vol.47 (15), p.5546-5556
Main Authors: Santiago-Morales, Javier, Gómez, María José, Herrera-López, Sonia, Fernández-Alba, Amadeo R., García-Calvo, Eloy, Rosal, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c482t-ec75d6e23f7d2e13efadba099779ce6748019e47beb1a4e8b9c0f387a5ad13463
cites cdi_FETCH-LOGICAL-c482t-ec75d6e23f7d2e13efadba099779ce6748019e47beb1a4e8b9c0f387a5ad13463
container_end_page 5556
container_issue 15
container_start_page 5546
container_title Water research (Oxford)
container_volume 47
creator Santiago-Morales, Javier
Gómez, María José
Herrera-López, Sonia
Fernández-Alba, Amadeo R.
García-Calvo, Eloy
Rosal, Roberto
description This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE–CG × GC–TOF–MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce–TiO2 photocatalysis reached ∼70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ−1, the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce–TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m2 m−3 order−1 for visible light irradiation to 0.16 ± 0.03 m2 m−3 order−1 for Ce–TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20–25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments. [Display omitted] •Removal of non-polar micropollutants from wastewater.•Comprehensive two-dimensional gas chromatography (GC × GC) for analyses.•Highest energy efficiency was obtained for ozonation treatment.•Visible light photocatalysis displayed high removal efficiency for synthetic musks.•Toxicity increased for irradiation treatments but decreased for ozonation.
doi_str_mv 10.1016/j.watres.2013.06.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660046667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135413005216</els_id><sourcerecordid>1647010199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-ec75d6e23f7d2e13efadba099779ce6748019e47beb1a4e8b9c0f387a5ad13463</originalsourceid><addsrcrecordid>eNqNks-O0zAQhyMEYsvCGyDwBYkDKXbs2skFCa2WP9JKHGDP1sSZtK5cu9hOV-VdeFecbYEb4mJfvvFvPN9U1XNGl4wy-Xa7vIMcMS0byviSyiXl9EG1YK3q6kaI9mG1oFTwmvGVuKiepLSllDYN7x5XFw1vJeeKLaqf1x7j-khwHK2x6M2RjCGSvEEScRcO4EgYiQ--3gcHkZTTTRl8TmSYovVrMrkc4WCDw0xsjDBYyDb4N-Rgk-0dEmfXm0z2m5CDgQzumGwi4AcSfgR_z84RQO4gZSx_wjh34yb0-Wn1aASX8Nn5vqxuP1x_u_pU33z5-Pnq_U1tRNvkGo1aDRIbPqqhQcZxhKEH2nVKdQalEi1lHQrVY89AYNt3ho68VbCCgXEh-WX1-vTuPobvE6asdzYZdA48hilpJmWZpZRS_QcqFC2Cuq6g4oSaGFKKOOp9tDuIR82onh3qrT451LNDTaUuDkvZi3PC1O9w-FP0W1oBXp0BSAbcGMEbm_5ySinKxcy9PHEjBA3rWJjbryVpVRaBdm0zd_juRGAZ7sFi1Ol-CXCwEU3WQ7D_7vUXJVHJ3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647010199</pqid></control><display><type>article</type><title>Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent</title><source>ScienceDirect Freedom Collection</source><creator>Santiago-Morales, Javier ; Gómez, María José ; Herrera-López, Sonia ; Fernández-Alba, Amadeo R. ; García-Calvo, Eloy ; Rosal, Roberto</creator><creatorcontrib>Santiago-Morales, Javier ; Gómez, María José ; Herrera-López, Sonia ; Fernández-Alba, Amadeo R. ; García-Calvo, Eloy ; Rosal, Roberto</creatorcontrib><description>This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE–CG × GC–TOF–MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce–TiO2 photocatalysis reached ∼70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ−1, the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce–TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m2 m−3 order−1 for visible light irradiation to 0.16 ± 0.03 m2 m−3 order−1 for Ce–TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20–25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments. [Display omitted] •Removal of non-polar micropollutants from wastewater.•Comprehensive two-dimensional gas chromatography (GC × GC) for analyses.•Highest energy efficiency was obtained for ozonation treatment.•Visible light photocatalysis displayed high removal efficiency for synthetic musks.•Toxicity increased for irradiation treatments but decreased for ozonation.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2013.06.030</identifier><identifier>PMID: 23863371</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>antiseptics ; Applied sciences ; Byproducts ; comprehensive two-dimensional gas chromatography ; Energy efficiency ; Exact sciences and technology ; filters ; Gas Chromatography-Mass Spectrometry ; herbicides ; insecticides ; Irradiation ; mercury ; Musk ; Non-polar pollutants ; Ozonation ; ozone ; Ozone - chemistry ; Photocatalysis ; Photochemistry - methods ; Pollutants ; Pollution ; polycyclic aromatic hydrocarbons ; Pseudokirchneriella subcapitata ; Selenastrum capricornutum ; titanium dioxide ; Toxicity ; Ultraviolet ; Ultraviolet irradiation ; ultraviolet radiation ; Ultraviolet Rays ; Visible light photocatalysis ; Waste water ; Waste Water - chemistry ; wastewater ; Water Pollutants, Chemical - chemistry ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2013-10, Vol.47 (15), p.5546-5556</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-ec75d6e23f7d2e13efadba099779ce6748019e47beb1a4e8b9c0f387a5ad13463</citedby><cites>FETCH-LOGICAL-c482t-ec75d6e23f7d2e13efadba099779ce6748019e47beb1a4e8b9c0f387a5ad13463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27770341$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23863371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santiago-Morales, Javier</creatorcontrib><creatorcontrib>Gómez, María José</creatorcontrib><creatorcontrib>Herrera-López, Sonia</creatorcontrib><creatorcontrib>Fernández-Alba, Amadeo R.</creatorcontrib><creatorcontrib>García-Calvo, Eloy</creatorcontrib><creatorcontrib>Rosal, Roberto</creatorcontrib><title>Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE–CG × GC–TOF–MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce–TiO2 photocatalysis reached ∼70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ−1, the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce–TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m2 m−3 order−1 for visible light irradiation to 0.16 ± 0.03 m2 m−3 order−1 for Ce–TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20–25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments. [Display omitted] •Removal of non-polar micropollutants from wastewater.•Comprehensive two-dimensional gas chromatography (GC × GC) for analyses.•Highest energy efficiency was obtained for ozonation treatment.•Visible light photocatalysis displayed high removal efficiency for synthetic musks.•Toxicity increased for irradiation treatments but decreased for ozonation.</description><subject>antiseptics</subject><subject>Applied sciences</subject><subject>Byproducts</subject><subject>comprehensive two-dimensional gas chromatography</subject><subject>Energy efficiency</subject><subject>Exact sciences and technology</subject><subject>filters</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>herbicides</subject><subject>insecticides</subject><subject>Irradiation</subject><subject>mercury</subject><subject>Musk</subject><subject>Non-polar pollutants</subject><subject>Ozonation</subject><subject>ozone</subject><subject>Ozone - chemistry</subject><subject>Photocatalysis</subject><subject>Photochemistry - methods</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>polycyclic aromatic hydrocarbons</subject><subject>Pseudokirchneriella subcapitata</subject><subject>Selenastrum capricornutum</subject><subject>titanium dioxide</subject><subject>Toxicity</subject><subject>Ultraviolet</subject><subject>Ultraviolet irradiation</subject><subject>ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Visible light photocatalysis</subject><subject>Waste water</subject><subject>Waste Water - chemistry</subject><subject>wastewater</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNks-O0zAQhyMEYsvCGyDwBYkDKXbs2skFCa2WP9JKHGDP1sSZtK5cu9hOV-VdeFecbYEb4mJfvvFvPN9U1XNGl4wy-Xa7vIMcMS0byviSyiXl9EG1YK3q6kaI9mG1oFTwmvGVuKiepLSllDYN7x5XFw1vJeeKLaqf1x7j-khwHK2x6M2RjCGSvEEScRcO4EgYiQ--3gcHkZTTTRl8TmSYovVrMrkc4WCDw0xsjDBYyDb4N-Rgk-0dEmfXm0z2m5CDgQzumGwi4AcSfgR_z84RQO4gZSx_wjh34yb0-Wn1aASX8Nn5vqxuP1x_u_pU33z5-Pnq_U1tRNvkGo1aDRIbPqqhQcZxhKEH2nVKdQalEi1lHQrVY89AYNt3ho68VbCCgXEh-WX1-vTuPobvE6asdzYZdA48hilpJmWZpZRS_QcqFC2Cuq6g4oSaGFKKOOp9tDuIR82onh3qrT451LNDTaUuDkvZi3PC1O9w-FP0W1oBXp0BSAbcGMEbm_5ySinKxcy9PHEjBA3rWJjbryVpVRaBdm0zd_juRGAZ7sFi1Ol-CXCwEU3WQ7D_7vUXJVHJ3Q</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Santiago-Morales, Javier</creator><creator>Gómez, María José</creator><creator>Herrera-López, Sonia</creator><creator>Fernández-Alba, Amadeo R.</creator><creator>García-Calvo, Eloy</creator><creator>Rosal, Roberto</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20131001</creationdate><title>Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent</title><author>Santiago-Morales, Javier ; Gómez, María José ; Herrera-López, Sonia ; Fernández-Alba, Amadeo R. ; García-Calvo, Eloy ; Rosal, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-ec75d6e23f7d2e13efadba099779ce6748019e47beb1a4e8b9c0f387a5ad13463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>antiseptics</topic><topic>Applied sciences</topic><topic>Byproducts</topic><topic>comprehensive two-dimensional gas chromatography</topic><topic>Energy efficiency</topic><topic>Exact sciences and technology</topic><topic>filters</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>herbicides</topic><topic>insecticides</topic><topic>Irradiation</topic><topic>mercury</topic><topic>Musk</topic><topic>Non-polar pollutants</topic><topic>Ozonation</topic><topic>ozone</topic><topic>Ozone - chemistry</topic><topic>Photocatalysis</topic><topic>Photochemistry - methods</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>polycyclic aromatic hydrocarbons</topic><topic>Pseudokirchneriella subcapitata</topic><topic>Selenastrum capricornutum</topic><topic>titanium dioxide</topic><topic>Toxicity</topic><topic>Ultraviolet</topic><topic>Ultraviolet irradiation</topic><topic>ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Visible light photocatalysis</topic><topic>Waste water</topic><topic>Waste Water - chemistry</topic><topic>wastewater</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santiago-Morales, Javier</creatorcontrib><creatorcontrib>Gómez, María José</creatorcontrib><creatorcontrib>Herrera-López, Sonia</creatorcontrib><creatorcontrib>Fernández-Alba, Amadeo R.</creatorcontrib><creatorcontrib>García-Calvo, Eloy</creatorcontrib><creatorcontrib>Rosal, Roberto</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santiago-Morales, Javier</au><au>Gómez, María José</au><au>Herrera-López, Sonia</au><au>Fernández-Alba, Amadeo R.</au><au>García-Calvo, Eloy</au><au>Rosal, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>47</volume><issue>15</issue><spage>5546</spage><epage>5556</epage><pages>5546-5556</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE–CG × GC–TOF–MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce–TiO2 photocatalysis reached ∼70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ−1, the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce–TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m2 m−3 order−1 for visible light irradiation to 0.16 ± 0.03 m2 m−3 order−1 for Ce–TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20–25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments. [Display omitted] •Removal of non-polar micropollutants from wastewater.•Comprehensive two-dimensional gas chromatography (GC × GC) for analyses.•Highest energy efficiency was obtained for ozonation treatment.•Visible light photocatalysis displayed high removal efficiency for synthetic musks.•Toxicity increased for irradiation treatments but decreased for ozonation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23863371</pmid><doi>10.1016/j.watres.2013.06.030</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2013-10, Vol.47 (15), p.5546-5556
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_1660046667
source ScienceDirect Freedom Collection
subjects antiseptics
Applied sciences
Byproducts
comprehensive two-dimensional gas chromatography
Energy efficiency
Exact sciences and technology
filters
Gas Chromatography-Mass Spectrometry
herbicides
insecticides
Irradiation
mercury
Musk
Non-polar pollutants
Ozonation
ozone
Ozone - chemistry
Photocatalysis
Photochemistry - methods
Pollutants
Pollution
polycyclic aromatic hydrocarbons
Pseudokirchneriella subcapitata
Selenastrum capricornutum
titanium dioxide
Toxicity
Ultraviolet
Ultraviolet irradiation
ultraviolet radiation
Ultraviolet Rays
Visible light photocatalysis
Waste water
Waste Water - chemistry
wastewater
Water Pollutants, Chemical - chemistry
Water treatment and pollution
title Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20efficiency%20for%20the%20removal%20of%20non-polar%20pollutants%20during%20ultraviolet%20irradiation,%20visible%20light%20photocatalysis%20and%20ozonation%20of%20a%20wastewater%20effluent&rft.jtitle=Water%20research%20(Oxford)&rft.au=Santiago-Morales,%20Javier&rft.date=2013-10-01&rft.volume=47&rft.issue=15&rft.spage=5546&rft.epage=5556&rft.pages=5546-5556&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2013.06.030&rft_dat=%3Cproquest_cross%3E1647010199%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-ec75d6e23f7d2e13efadba099779ce6748019e47beb1a4e8b9c0f387a5ad13463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1647010199&rft_id=info:pmid/23863371&rfr_iscdi=true