Loading…

Improvement and simplification of fed-batch bioprocesses with a highly soluble phosphotyrosine sodium salt

Fed-batch culture bioprocesses are currently used predominantly for the production of recombinant proteins, especially monoclonal antibodies. In these cultures, concentrated feeds are added during cultivation to prevent nutrient depletion, thus extending the cellular growth phase and increasing prod...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biotechnology 2014-09, Vol.186, p.110-118
Main Authors: Zimmer, Aline, Mueller, Ronja, Wehsling, Maria, Schnellbaecher, Alisa, von Hagen, Joerg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fed-batch culture bioprocesses are currently used predominantly for the production of recombinant proteins, especially monoclonal antibodies. In these cultures, concentrated feeds are added during cultivation to prevent nutrient depletion, thus extending the cellular growth phase and increasing product concentrations. One limitation in these bioprocesses arises from the low solubility or stability of some compounds at high concentrations, in particular amino acids. This study describes the synthesis and evaluation of a phosphotyrosine disodium salt as a tyrosine source in fed-batch processes. This molecule is highly soluble in concentrated feeds at neutral pH. Mechanistic studies demonstrated that the molecule is cleaved in the cell culture supernatant after processing by released phosphatases, leading to phosphate and free L-tyrosine which can be taken up by the cells. No intact phosphotyrosine was detected intracellularly or incorporated into the sequence of the monoclonal antibody. The use of this new molecule allows the simplification of fed-batch processes in large scale manufacturing via the implementation of neutral pH, highly concentrated feeds.
ISSN:0168-1656
1873-4863
DOI:10.1016/j.jbiotec.2014.06.026