Loading…

Description of sub- and superharmonic motion in rotor-stator contact using Fourier series

This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous conta...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2014-11, Vol.94 (11), p.945-950
Main Authors: Alber, O., Mahner, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423
container_end_page 950
container_issue 11
container_start_page 945
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 94
creator Alber, O.
Mahner, M.
description This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model. This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.
doi_str_mv 10.1002/zamm.201300250
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660049441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660049441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD62rgNu3HTMq027HGZ8gaMgiugmpPFWo20zJi06_nozVkTcuDr3hu9cTg5Ce5SMKSHs8EM3zZgRyuOSkjU0oimjiSCErqMRIUIkjGVyE22F8Ezia0H5CN3NIBhvF511LXYVDn2ZYN0-xGEB_kn7xrXW4MZ9AbbF3nXOJ6HTUbBxbadNh_tg20d87HpvweMAUcIO2qh0HWD3W7fRzfHR9fQ0Ob88OZtOzhPDJCcJ1WVG0vLBSEKkqKTRleEgTaYFQJ4xmQODgqdg8hIMFIZXJRRC5oyLnAjGt9HBcHfh3WsPoVONDQbqWrfg-qBolsXPF0LQiO7_QZ9j5DamixQtRKyHrw6OB8p4F4KHSi28bbRfKkrUqmm1alr9NB0NxWB4szUs_6HV_WQ-_-1NBq8NHbz_eLV_UTGMTNXtxUkMd8VuZ8VM5fwTsUGR6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619426732</pqid></control><display><type>article</type><title>Description of sub- and superharmonic motion in rotor-stator contact using Fourier series</title><source>Wiley</source><creator>Alber, O. ; Mahner, M.</creator><creatorcontrib>Alber, O. ; Mahner, M.</creatorcontrib><description>This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model. This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201300250</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Contact ; Fourier analysis ; Fourier series ; harmonic balance ; Kinematics ; Mathematical models ; Nonlinearity ; Rotor stator contact ; rub ; Simplification ; subharmonics ; Superharmonics</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2014-11, Vol.94 (11), p.945-950</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alber, O.</creatorcontrib><creatorcontrib>Mahner, M.</creatorcontrib><title>Description of sub- and superharmonic motion in rotor-stator contact using Fourier series</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model. This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.</description><subject>Contact</subject><subject>Fourier analysis</subject><subject>Fourier series</subject><subject>harmonic balance</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Rotor stator contact</subject><subject>rub</subject><subject>Simplification</subject><subject>subharmonics</subject><subject>Superharmonics</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD62rgNu3HTMq027HGZ8gaMgiugmpPFWo20zJi06_nozVkTcuDr3hu9cTg5Ce5SMKSHs8EM3zZgRyuOSkjU0oimjiSCErqMRIUIkjGVyE22F8Ezia0H5CN3NIBhvF511LXYVDn2ZYN0-xGEB_kn7xrXW4MZ9AbbF3nXOJ6HTUbBxbadNh_tg20d87HpvweMAUcIO2qh0HWD3W7fRzfHR9fQ0Ob88OZtOzhPDJCcJ1WVG0vLBSEKkqKTRleEgTaYFQJ4xmQODgqdg8hIMFIZXJRRC5oyLnAjGt9HBcHfh3WsPoVONDQbqWrfg-qBolsXPF0LQiO7_QZ9j5DamixQtRKyHrw6OB8p4F4KHSi28bbRfKkrUqmm1alr9NB0NxWB4szUs_6HV_WQ-_-1NBq8NHbz_eLV_UTGMTNXtxUkMd8VuZ8VM5fwTsUGR6A</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Alber, O.</creator><creator>Mahner, M.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201411</creationdate><title>Description of sub- and superharmonic motion in rotor-stator contact using Fourier series</title><author>Alber, O. ; Mahner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Contact</topic><topic>Fourier analysis</topic><topic>Fourier series</topic><topic>harmonic balance</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Rotor stator contact</topic><topic>rub</topic><topic>Simplification</topic><topic>subharmonics</topic><topic>Superharmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alber, O.</creatorcontrib><creatorcontrib>Mahner, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alber, O.</au><au>Mahner, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Description of sub- and superharmonic motion in rotor-stator contact using Fourier series</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2014-11</date><risdate>2014</risdate><volume>94</volume><issue>11</issue><spage>945</spage><epage>950</epage><pages>945-950</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model. This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.201300250</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2014-11, Vol.94 (11), p.945-950
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_miscellaneous_1660049441
source Wiley
subjects Contact
Fourier analysis
Fourier series
harmonic balance
Kinematics
Mathematical models
Nonlinearity
Rotor stator contact
rub
Simplification
subharmonics
Superharmonics
title Description of sub- and superharmonic motion in rotor-stator contact using Fourier series
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Description%20of%20sub-%20and%20superharmonic%20motion%20in%20rotor-stator%20contact%20using%20Fourier%20series&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Alber,%20O.&rft.date=2014-11&rft.volume=94&rft.issue=11&rft.spage=945&rft.epage=950&rft.pages=945-950&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201300250&rft_dat=%3Cproquest_cross%3E1660049441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1619426732&rft_id=info:pmid/&rfr_iscdi=true