Loading…
Description of sub- and superharmonic motion in rotor-stator contact using Fourier series
This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous conta...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Mechanik 2014-11, Vol.94 (11), p.945-950 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423 |
container_end_page | 950 |
container_issue | 11 |
container_start_page | 945 |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 94 |
creator | Alber, O. Mahner, M. |
description | This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.
This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model. |
doi_str_mv | 10.1002/zamm.201300250 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660049441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660049441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD62rgNu3HTMq027HGZ8gaMgiugmpPFWo20zJi06_nozVkTcuDr3hu9cTg5Ce5SMKSHs8EM3zZgRyuOSkjU0oimjiSCErqMRIUIkjGVyE22F8Ezia0H5CN3NIBhvF511LXYVDn2ZYN0-xGEB_kn7xrXW4MZ9AbbF3nXOJ6HTUbBxbadNh_tg20d87HpvweMAUcIO2qh0HWD3W7fRzfHR9fQ0Ob88OZtOzhPDJCcJ1WVG0vLBSEKkqKTRleEgTaYFQJ4xmQODgqdg8hIMFIZXJRRC5oyLnAjGt9HBcHfh3WsPoVONDQbqWrfg-qBolsXPF0LQiO7_QZ9j5DamixQtRKyHrw6OB8p4F4KHSi28bbRfKkrUqmm1alr9NB0NxWB4szUs_6HV_WQ-_-1NBq8NHbz_eLV_UTGMTNXtxUkMd8VuZ8VM5fwTsUGR6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619426732</pqid></control><display><type>article</type><title>Description of sub- and superharmonic motion in rotor-stator contact using Fourier series</title><source>Wiley</source><creator>Alber, O. ; Mahner, M.</creator><creatorcontrib>Alber, O. ; Mahner, M.</creatorcontrib><description>This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.
This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201300250</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Contact ; Fourier analysis ; Fourier series ; harmonic balance ; Kinematics ; Mathematical models ; Nonlinearity ; Rotor stator contact ; rub ; Simplification ; subharmonics ; Superharmonics</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2014-11, Vol.94 (11), p.945-950</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alber, O.</creatorcontrib><creatorcontrib>Mahner, M.</creatorcontrib><title>Description of sub- and superharmonic motion in rotor-stator contact using Fourier series</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.
This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.</description><subject>Contact</subject><subject>Fourier analysis</subject><subject>Fourier series</subject><subject>harmonic balance</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Rotor stator contact</subject><subject>rub</subject><subject>Simplification</subject><subject>subharmonics</subject><subject>Superharmonics</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD62rgNu3HTMq027HGZ8gaMgiugmpPFWo20zJi06_nozVkTcuDr3hu9cTg5Ce5SMKSHs8EM3zZgRyuOSkjU0oimjiSCErqMRIUIkjGVyE22F8Ezia0H5CN3NIBhvF511LXYVDn2ZYN0-xGEB_kn7xrXW4MZ9AbbF3nXOJ6HTUbBxbadNh_tg20d87HpvweMAUcIO2qh0HWD3W7fRzfHR9fQ0Ob88OZtOzhPDJCcJ1WVG0vLBSEKkqKTRleEgTaYFQJ4xmQODgqdg8hIMFIZXJRRC5oyLnAjGt9HBcHfh3WsPoVONDQbqWrfg-qBolsXPF0LQiO7_QZ9j5DamixQtRKyHrw6OB8p4F4KHSi28bbRfKkrUqmm1alr9NB0NxWB4szUs_6HV_WQ-_-1NBq8NHbz_eLV_UTGMTNXtxUkMd8VuZ8VM5fwTsUGR6A</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Alber, O.</creator><creator>Mahner, M.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201411</creationdate><title>Description of sub- and superharmonic motion in rotor-stator contact using Fourier series</title><author>Alber, O. ; Mahner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Contact</topic><topic>Fourier analysis</topic><topic>Fourier series</topic><topic>harmonic balance</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Rotor stator contact</topic><topic>rub</topic><topic>Simplification</topic><topic>subharmonics</topic><topic>Superharmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alber, O.</creatorcontrib><creatorcontrib>Mahner, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alber, O.</au><au>Mahner, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Description of sub- and superharmonic motion in rotor-stator contact using Fourier series</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2014-11</date><risdate>2014</risdate><volume>94</volume><issue>11</issue><spage>945</spage><epage>950</epage><pages>945-950</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.
This paper deals with the description of steady‐state sub‐ and superharmonic motion in rotor‐stator contact using truncated complex Fourier series. Two different approaches are presented with different stages of simplification. In particular, a kinematic contact condition describing continuous contact is used. The multi‐harmonic balance method is applied to solve the differential algebraic system of equations. A further simplification is implemented which uses the triangular inequality to approximate the nonlinear term in the kinematic contact condition. The Fourier coefficients of the nonlinear term are calculated using an integral expression. Reasonable initial values of the Fourier coefficients for the numerical solution are obtained by a hybrid approach. Results show good agreement with calculations by direct numerical integration using a pseudo‐linear viscoelastic contact model.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.201300250</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2014-11, Vol.94 (11), p.945-950 |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660049441 |
source | Wiley |
subjects | Contact Fourier analysis Fourier series harmonic balance Kinematics Mathematical models Nonlinearity Rotor stator contact rub Simplification subharmonics Superharmonics |
title | Description of sub- and superharmonic motion in rotor-stator contact using Fourier series |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Description%20of%20sub-%20and%20superharmonic%20motion%20in%20rotor-stator%20contact%20using%20Fourier%20series&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Alber,%20O.&rft.date=2014-11&rft.volume=94&rft.issue=11&rft.spage=945&rft.epage=950&rft.pages=945-950&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201300250&rft_dat=%3Cproquest_cross%3E1660049441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2730-1ab605bdc70074f7cafc3e7c6a4ee86278e2e935ec8bece9c3fbe947823480423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1619426732&rft_id=info:pmid/&rfr_iscdi=true |