Loading…
Atomistic modeling of Ag, Au, and Pt nanoframes
[Display omitted] •A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transit...
Saved in:
Published in: | Computational materials science 2015-02, Vol.98, p.142-148 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183 |
container_end_page | 148 |
container_issue | |
container_start_page | 142 |
container_title | Computational materials science |
container_volume | 98 |
creator | Fioressi, Silvina E. Bacelo, Daniel E. Bozzolo, Guillermo Mosca, Hugo O. del Grosso, Mariela F. |
description | [Display omitted]
•A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transitions to a cluster of separate nanoparticles, or a compact large nanocluster.•A simple numerical rule was developed to estimate the critical temperatures.
Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other. |
doi_str_mv | 10.1016/j.commatsci.2014.11.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660054890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025614007708</els_id><sourcerecordid>1660054890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDWTJokln8nDsZVTxkirBonvLz8pVEhc7ReLvCSpiy2o2517dOYTcIxQISNeHQodhkFPSvigB6wKxAKguyAJZy3NggJdkAbxscygbek1uUjrAnOSsXJB1N4XBp8nrbAjG9n7cZ8Fl3X6VdadVJkeTvU_ZKMfgohxsuiVXTvbJ3v3eJdk9Pe42L_n27fl1021zXfF2yl1jpNGVrDVnBozBxoJkymlDlWK8qiTqClHXqmSqpU1DFdPKKV4Cd8iqJXk41x5j-DjZNIl5pLZ9L0cbTkkgpQBNzTjMaHtGdQwpRevEMfpBxi-BIH4MiYP4MyR-DAlEMRuak905aedHPr2NYibsqK3x0epJmOD_7fgGswJykA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660054890</pqid></control><display><type>article</type><title>Atomistic modeling of Ag, Au, and Pt nanoframes</title><source>ScienceDirect Journals</source><creator>Fioressi, Silvina E. ; Bacelo, Daniel E. ; Bozzolo, Guillermo ; Mosca, Hugo O. ; del Grosso, Mariela F.</creator><creatorcontrib>Fioressi, Silvina E. ; Bacelo, Daniel E. ; Bozzolo, Guillermo ; Mosca, Hugo O. ; del Grosso, Mariela F.</creatorcontrib><description>[Display omitted]
•A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transitions to a cluster of separate nanoparticles, or a compact large nanocluster.•A simple numerical rule was developed to estimate the critical temperatures.
Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2014.11.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; BFS method ; Clusters ; Computer simulation ; Evolution ; Gold ; Metallic nanocages ; Nanoframes ; Nanostructure ; Platinum ; Silver</subject><ispartof>Computational materials science, 2015-02, Vol.98, p.142-148</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183</citedby><cites>FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Fioressi, Silvina E.</creatorcontrib><creatorcontrib>Bacelo, Daniel E.</creatorcontrib><creatorcontrib>Bozzolo, Guillermo</creatorcontrib><creatorcontrib>Mosca, Hugo O.</creatorcontrib><creatorcontrib>del Grosso, Mariela F.</creatorcontrib><title>Atomistic modeling of Ag, Au, and Pt nanoframes</title><title>Computational materials science</title><description>[Display omitted]
•A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transitions to a cluster of separate nanoparticles, or a compact large nanocluster.•A simple numerical rule was developed to estimate the critical temperatures.
Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other.</description><subject>Approximation</subject><subject>BFS method</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Evolution</subject><subject>Gold</subject><subject>Metallic nanocages</subject><subject>Nanoframes</subject><subject>Nanostructure</subject><subject>Platinum</subject><subject>Silver</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDWTJokln8nDsZVTxkirBonvLz8pVEhc7ReLvCSpiy2o2517dOYTcIxQISNeHQodhkFPSvigB6wKxAKguyAJZy3NggJdkAbxscygbek1uUjrAnOSsXJB1N4XBp8nrbAjG9n7cZ8Fl3X6VdadVJkeTvU_ZKMfgohxsuiVXTvbJ3v3eJdk9Pe42L_n27fl1021zXfF2yl1jpNGVrDVnBozBxoJkymlDlWK8qiTqClHXqmSqpU1DFdPKKV4Cd8iqJXk41x5j-DjZNIl5pLZ9L0cbTkkgpQBNzTjMaHtGdQwpRevEMfpBxi-BIH4MiYP4MyR-DAlEMRuak905aedHPr2NYibsqK3x0epJmOD_7fgGswJykA</recordid><startdate>20150215</startdate><enddate>20150215</enddate><creator>Fioressi, Silvina E.</creator><creator>Bacelo, Daniel E.</creator><creator>Bozzolo, Guillermo</creator><creator>Mosca, Hugo O.</creator><creator>del Grosso, Mariela F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150215</creationdate><title>Atomistic modeling of Ag, Au, and Pt nanoframes</title><author>Fioressi, Silvina E. ; Bacelo, Daniel E. ; Bozzolo, Guillermo ; Mosca, Hugo O. ; del Grosso, Mariela F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>BFS method</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Evolution</topic><topic>Gold</topic><topic>Metallic nanocages</topic><topic>Nanoframes</topic><topic>Nanostructure</topic><topic>Platinum</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fioressi, Silvina E.</creatorcontrib><creatorcontrib>Bacelo, Daniel E.</creatorcontrib><creatorcontrib>Bozzolo, Guillermo</creatorcontrib><creatorcontrib>Mosca, Hugo O.</creatorcontrib><creatorcontrib>del Grosso, Mariela F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fioressi, Silvina E.</au><au>Bacelo, Daniel E.</au><au>Bozzolo, Guillermo</au><au>Mosca, Hugo O.</au><au>del Grosso, Mariela F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic modeling of Ag, Au, and Pt nanoframes</atitle><jtitle>Computational materials science</jtitle><date>2015-02-15</date><risdate>2015</risdate><volume>98</volume><spage>142</spage><epage>148</epage><pages>142-148</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted]
•A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transitions to a cluster of separate nanoparticles, or a compact large nanocluster.•A simple numerical rule was developed to estimate the critical temperatures.
Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2014.11.003</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2015-02, Vol.98, p.142-148 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660054890 |
source | ScienceDirect Journals |
subjects | Approximation BFS method Clusters Computer simulation Evolution Gold Metallic nanocages Nanoframes Nanostructure Platinum Silver |
title | Atomistic modeling of Ag, Au, and Pt nanoframes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20modeling%20of%20Ag,%20Au,%20and%20Pt%20nanoframes&rft.jtitle=Computational%20materials%20science&rft.au=Fioressi,%20Silvina%20E.&rft.date=2015-02-15&rft.volume=98&rft.spage=142&rft.epage=148&rft.pages=142-148&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2014.11.003&rft_dat=%3Cproquest_cross%3E1660054890%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660054890&rft_id=info:pmid/&rfr_iscdi=true |