Loading…

Atomistic modeling of Ag, Au, and Pt nanoframes

[Display omitted] •A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transit...

Full description

Saved in:
Bibliographic Details
Published in:Computational materials science 2015-02, Vol.98, p.142-148
Main Authors: Fioressi, Silvina E., Bacelo, Daniel E., Bozzolo, Guillermo, Mosca, Hugo O., del Grosso, Mariela F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183
cites cdi_FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183
container_end_page 148
container_issue
container_start_page 142
container_title Computational materials science
container_volume 98
creator Fioressi, Silvina E.
Bacelo, Daniel E.
Bozzolo, Guillermo
Mosca, Hugo O.
del Grosso, Mariela F.
description [Display omitted] •A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transitions to a cluster of separate nanoparticles, or a compact large nanocluster.•A simple numerical rule was developed to estimate the critical temperatures. Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other.
doi_str_mv 10.1016/j.commatsci.2014.11.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660054890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025614007708</els_id><sourcerecordid>1660054890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDWTJokln8nDsZVTxkirBonvLz8pVEhc7ReLvCSpiy2o2517dOYTcIxQISNeHQodhkFPSvigB6wKxAKguyAJZy3NggJdkAbxscygbek1uUjrAnOSsXJB1N4XBp8nrbAjG9n7cZ8Fl3X6VdadVJkeTvU_ZKMfgohxsuiVXTvbJ3v3eJdk9Pe42L_n27fl1021zXfF2yl1jpNGVrDVnBozBxoJkymlDlWK8qiTqClHXqmSqpU1DFdPKKV4Cd8iqJXk41x5j-DjZNIl5pLZ9L0cbTkkgpQBNzTjMaHtGdQwpRevEMfpBxi-BIH4MiYP4MyR-DAlEMRuak905aedHPr2NYibsqK3x0epJmOD_7fgGswJykA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660054890</pqid></control><display><type>article</type><title>Atomistic modeling of Ag, Au, and Pt nanoframes</title><source>ScienceDirect Journals</source><creator>Fioressi, Silvina E. ; Bacelo, Daniel E. ; Bozzolo, Guillermo ; Mosca, Hugo O. ; del Grosso, Mariela F.</creator><creatorcontrib>Fioressi, Silvina E. ; Bacelo, Daniel E. ; Bozzolo, Guillermo ; Mosca, Hugo O. ; del Grosso, Mariela F.</creatorcontrib><description>[Display omitted] •A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transitions to a cluster of separate nanoparticles, or a compact large nanocluster.•A simple numerical rule was developed to estimate the critical temperatures. Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2014.11.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; BFS method ; Clusters ; Computer simulation ; Evolution ; Gold ; Metallic nanocages ; Nanoframes ; Nanostructure ; Platinum ; Silver</subject><ispartof>Computational materials science, 2015-02, Vol.98, p.142-148</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183</citedby><cites>FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Fioressi, Silvina E.</creatorcontrib><creatorcontrib>Bacelo, Daniel E.</creatorcontrib><creatorcontrib>Bozzolo, Guillermo</creatorcontrib><creatorcontrib>Mosca, Hugo O.</creatorcontrib><creatorcontrib>del Grosso, Mariela F.</creatorcontrib><title>Atomistic modeling of Ag, Au, and Pt nanoframes</title><title>Computational materials science</title><description>[Display omitted] •A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transitions to a cluster of separate nanoparticles, or a compact large nanocluster.•A simple numerical rule was developed to estimate the critical temperatures. Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other.</description><subject>Approximation</subject><subject>BFS method</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Evolution</subject><subject>Gold</subject><subject>Metallic nanocages</subject><subject>Nanoframes</subject><subject>Nanostructure</subject><subject>Platinum</subject><subject>Silver</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDWTJokln8nDsZVTxkirBonvLz8pVEhc7ReLvCSpiy2o2517dOYTcIxQISNeHQodhkFPSvigB6wKxAKguyAJZy3NggJdkAbxscygbek1uUjrAnOSsXJB1N4XBp8nrbAjG9n7cZ8Fl3X6VdadVJkeTvU_ZKMfgohxsuiVXTvbJ3v3eJdk9Pe42L_n27fl1021zXfF2yl1jpNGVrDVnBozBxoJkymlDlWK8qiTqClHXqmSqpU1DFdPKKV4Cd8iqJXk41x5j-DjZNIl5pLZ9L0cbTkkgpQBNzTjMaHtGdQwpRevEMfpBxi-BIH4MiYP4MyR-DAlEMRuak905aedHPr2NYibsqK3x0epJmOD_7fgGswJykA</recordid><startdate>20150215</startdate><enddate>20150215</enddate><creator>Fioressi, Silvina E.</creator><creator>Bacelo, Daniel E.</creator><creator>Bozzolo, Guillermo</creator><creator>Mosca, Hugo O.</creator><creator>del Grosso, Mariela F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150215</creationdate><title>Atomistic modeling of Ag, Au, and Pt nanoframes</title><author>Fioressi, Silvina E. ; Bacelo, Daniel E. ; Bozzolo, Guillermo ; Mosca, Hugo O. ; del Grosso, Mariela F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>BFS method</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Evolution</topic><topic>Gold</topic><topic>Metallic nanocages</topic><topic>Nanoframes</topic><topic>Nanostructure</topic><topic>Platinum</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fioressi, Silvina E.</creatorcontrib><creatorcontrib>Bacelo, Daniel E.</creatorcontrib><creatorcontrib>Bozzolo, Guillermo</creatorcontrib><creatorcontrib>Mosca, Hugo O.</creatorcontrib><creatorcontrib>del Grosso, Mariela F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fioressi, Silvina E.</au><au>Bacelo, Daniel E.</au><au>Bozzolo, Guillermo</au><au>Mosca, Hugo O.</au><au>del Grosso, Mariela F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic modeling of Ag, Au, and Pt nanoframes</atitle><jtitle>Computational materials science</jtitle><date>2015-02-15</date><risdate>2015</risdate><volume>98</volume><spage>142</spage><epage>148</epage><pages>142-148</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted] •A purely computational approach was developed for the study of metallic nanoframes.•Cubic monoatomic nanoframes of Ag, Au, and Pt were studied with atomistic Monte Carlo simulations.•Their evolution with temperature as a function of size and width is presented.•We observed transitions to a cluster of separate nanoparticles, or a compact large nanocluster.•A simple numerical rule was developed to estimate the critical temperatures. Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2014.11.003</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2015-02, Vol.98, p.142-148
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1660054890
source ScienceDirect Journals
subjects Approximation
BFS method
Clusters
Computer simulation
Evolution
Gold
Metallic nanocages
Nanoframes
Nanostructure
Platinum
Silver
title Atomistic modeling of Ag, Au, and Pt nanoframes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20modeling%20of%20Ag,%20Au,%20and%20Pt%20nanoframes&rft.jtitle=Computational%20materials%20science&rft.au=Fioressi,%20Silvina%20E.&rft.date=2015-02-15&rft.volume=98&rft.spage=142&rft.epage=148&rft.pages=142-148&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2014.11.003&rft_dat=%3Cproquest_cross%3E1660054890%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-f5dadc3a4c98d0dd15e0a8bfcd6bb8933a1c311c4b28b76556b8cbfb9209f183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660054890&rft_id=info:pmid/&rfr_iscdi=true