Loading…

Active flutter suppression of a multiple-actuated-wing wind tunnel model

In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow regime. The unsteady aerodynamic forces of the MAW model are computed based on the doubl...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of aeronautics 2014-12, Vol.27 (6), p.1451-1460
Main Authors: Qian, Wenmin, Huang, Rui, Hu, Haiyan, Yonghui, Zhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow regime. The unsteady aerodynamic forces of the MAW model are computed based on the doublet-lattice method(DLM). As the first attempt, the conventional linear quadratic-Gaussian(LQG) controller is designed to actively suppress the flutter of the MAW model. However, because of the time delay in the control loop, the wind tunnel tests illustrate that the LQG-controlled MAW model has no guaranteed stability margins. To compensate the time delay, hence, a time-delay filter, approximated via the first-order Pade approximation, is added to the LQG controller. Based on the time-delay feedback controller, a new digital control system is constructed by using a fixed-point and embedded digital signal processor(DSP) of high performance. Then, a number of wind tunnel tests are implemented based on the digital control system.The experimental results show that the present time-delay feedback controller can expand the flutter boundary of the MAW model and suppress the flutter instability of the open-loop aeroelastic system effectively.
ISSN:1000-9361
DOI:10.1016/j.cja.2014.10.011