Loading…

Spatial localization of linear elastic waves in composite materials with defects

We study the phenomenon of a spatial localization of elastic waves in periodic composite materials with local defects. The wave spectrum in heterogeneous composite solids includes pass and stop frequency bands. If the frequency of the signal falls within a stop band, the group velocity vanishes and...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2014-12, Vol.94 (12), p.1001-1010
Main Authors: Andrianov, I.V., Danishevs'kyy, V.V., Kushnierov, I.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4583-205706e9402f906c6bc3403ce0f3c22c4c5f51551e60da90350905c709c060e63
cites cdi_FETCH-LOGICAL-c4583-205706e9402f906c6bc3403ce0f3c22c4c5f51551e60da90350905c709c060e63
container_end_page 1010
container_issue 12
container_start_page 1001
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 94
creator Andrianov, I.V.
Danishevs'kyy, V.V.
Kushnierov, I.A.
description We study the phenomenon of a spatial localization of elastic waves in periodic composite materials with local defects. The wave spectrum in heterogeneous composite solids includes pass and stop frequency bands. If the frequency of the signal falls within a stop band, the group velocity vanishes and the wave attenuates exponentially. In such a case, a local perturbation of the microstructure may lead to the localization of the wave energy in the vicinity of the defect. Longitudinal tension‐compression waves in a layered composite and transverse antiplane shear waves in a unidirectional fibrous composite are considered. Local perturbations of the density and of the volume fractions of the components are taken into account. The analysis is based on the transfer‐matrix method and on the plane‐wave expansions method. As the result, the frequencies of the wave localization and the corresponding attenuation factors are determined. The authors study the phenomenon of a spatial localization of elastic waves in periodic composite materials with local defects. The wave spectrum in heterogeneous composite solids includes pass and stop frequency bands. If the frequency of the signal falls within a stop band, the group velocity vanishes and the wave attenuates exponentially. In such a case, a local perturbation of the microstructure may lead to the localization of the wave energy in the vicinity of the defect. Longitudinal tension‐compression waves in a layered composite and transverse antiplane shear waves in a unidirectional fibrous composite are considered. Local perturbations of the density and of the volume fractions of the components are taken into account. The analysis is based on the transfer‐matrix method and on the plane‐wave expansions method. As the result, the frequencies of the wave localization and the corresponding attenuation factors are determined.
doi_str_mv 10.1002/zamm.201200273
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660059458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660059458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4583-205706e9402f906c6bc3403ce0f3c22c4c5f51551e60da90350905c709c060e63</originalsourceid><addsrcrecordid>eNqFkEFPGzEQRi1UJNLQa8-WuHDZMLbX3vgIUQmIhLZqEVUvlmtmhcPuOtgbUvj1OAqKUC89jWb03szoI-QzgxED4Ccvtm1HHBjPTSX2yIBJzooSgH0gA4CyLDhX1QH5mNIC8lQzMSDffixt721Dm-Bs419yEzoaatr4Dm2k2NjUe0fX9gkT9R11oV2G5Hukre0xZjXRte_v6R3W6Pp0SPbrPMNPb3VIbs6__JxcFLOv08vJ6axwpRyLgoOsQKEugdcalFN_nChBOIRaOM5d6WQtmZQMFdxZDUKCBukq0A4UoBJDcrzdu4zhcYWpN61PDpvGdhhWyTClAKTeHBuSo3_QRVjFLn-XKT7WSowrnanRlnIxpBSxNsvoWxufDQOzCdhsAja7gLOgt8LaN_j8H9r8Pp3P37vF1vWpx78718YHoypRSXN7PTW_pt-rK3Y2MVK8AtKfjQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1628963879</pqid></control><display><type>article</type><title>Spatial localization of linear elastic waves in composite materials with defects</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Andrianov, I.V. ; Danishevs'kyy, V.V. ; Kushnierov, I.A.</creator><creatorcontrib>Andrianov, I.V. ; Danishevs'kyy, V.V. ; Kushnierov, I.A.</creatorcontrib><description>We study the phenomenon of a spatial localization of elastic waves in periodic composite materials with local defects. The wave spectrum in heterogeneous composite solids includes pass and stop frequency bands. If the frequency of the signal falls within a stop band, the group velocity vanishes and the wave attenuates exponentially. In such a case, a local perturbation of the microstructure may lead to the localization of the wave energy in the vicinity of the defect. Longitudinal tension‐compression waves in a layered composite and transverse antiplane shear waves in a unidirectional fibrous composite are considered. Local perturbations of the density and of the volume fractions of the components are taken into account. The analysis is based on the transfer‐matrix method and on the plane‐wave expansions method. As the result, the frequencies of the wave localization and the corresponding attenuation factors are determined. The authors study the phenomenon of a spatial localization of elastic waves in periodic composite materials with local defects. The wave spectrum in heterogeneous composite solids includes pass and stop frequency bands. If the frequency of the signal falls within a stop band, the group velocity vanishes and the wave attenuates exponentially. In such a case, a local perturbation of the microstructure may lead to the localization of the wave energy in the vicinity of the defect. Longitudinal tension‐compression waves in a layered composite and transverse antiplane shear waves in a unidirectional fibrous composite are considered. Local perturbations of the density and of the volume fractions of the components are taken into account. The analysis is based on the transfer‐matrix method and on the plane‐wave expansions method. As the result, the frequencies of the wave localization and the corresponding attenuation factors are determined.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201200273</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Attenuation ; Composite material ; Composite materials ; Defects ; Density ; dispersion ; elastic wave ; Localization ; Perturbation methods ; Plugs ; Position (location) ; wave localization</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2014-12, Vol.94 (12), p.1001-1010</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4583-205706e9402f906c6bc3403ce0f3c22c4c5f51551e60da90350905c709c060e63</citedby><cites>FETCH-LOGICAL-c4583-205706e9402f906c6bc3403ce0f3c22c4c5f51551e60da90350905c709c060e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Andrianov, I.V.</creatorcontrib><creatorcontrib>Danishevs'kyy, V.V.</creatorcontrib><creatorcontrib>Kushnierov, I.A.</creatorcontrib><title>Spatial localization of linear elastic waves in composite materials with defects</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>We study the phenomenon of a spatial localization of elastic waves in periodic composite materials with local defects. The wave spectrum in heterogeneous composite solids includes pass and stop frequency bands. If the frequency of the signal falls within a stop band, the group velocity vanishes and the wave attenuates exponentially. In such a case, a local perturbation of the microstructure may lead to the localization of the wave energy in the vicinity of the defect. Longitudinal tension‐compression waves in a layered composite and transverse antiplane shear waves in a unidirectional fibrous composite are considered. Local perturbations of the density and of the volume fractions of the components are taken into account. The analysis is based on the transfer‐matrix method and on the plane‐wave expansions method. As the result, the frequencies of the wave localization and the corresponding attenuation factors are determined. The authors study the phenomenon of a spatial localization of elastic waves in periodic composite materials with local defects. The wave spectrum in heterogeneous composite solids includes pass and stop frequency bands. If the frequency of the signal falls within a stop band, the group velocity vanishes and the wave attenuates exponentially. In such a case, a local perturbation of the microstructure may lead to the localization of the wave energy in the vicinity of the defect. Longitudinal tension‐compression waves in a layered composite and transverse antiplane shear waves in a unidirectional fibrous composite are considered. Local perturbations of the density and of the volume fractions of the components are taken into account. The analysis is based on the transfer‐matrix method and on the plane‐wave expansions method. As the result, the frequencies of the wave localization and the corresponding attenuation factors are determined.</description><subject>Attenuation</subject><subject>Composite material</subject><subject>Composite materials</subject><subject>Defects</subject><subject>Density</subject><subject>dispersion</subject><subject>elastic wave</subject><subject>Localization</subject><subject>Perturbation methods</subject><subject>Plugs</subject><subject>Position (location)</subject><subject>wave localization</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPGzEQRi1UJNLQa8-WuHDZMLbX3vgIUQmIhLZqEVUvlmtmhcPuOtgbUvj1OAqKUC89jWb03szoI-QzgxED4Ccvtm1HHBjPTSX2yIBJzooSgH0gA4CyLDhX1QH5mNIC8lQzMSDffixt721Dm-Bs419yEzoaatr4Dm2k2NjUe0fX9gkT9R11oV2G5Hukre0xZjXRte_v6R3W6Pp0SPbrPMNPb3VIbs6__JxcFLOv08vJ6axwpRyLgoOsQKEugdcalFN_nChBOIRaOM5d6WQtmZQMFdxZDUKCBukq0A4UoBJDcrzdu4zhcYWpN61PDpvGdhhWyTClAKTeHBuSo3_QRVjFLn-XKT7WSowrnanRlnIxpBSxNsvoWxufDQOzCdhsAja7gLOgt8LaN_j8H9r8Pp3P37vF1vWpx78718YHoypRSXN7PTW_pt-rK3Y2MVK8AtKfjQc</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Andrianov, I.V.</creator><creator>Danishevs'kyy, V.V.</creator><creator>Kushnierov, I.A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SR</scope><scope>JG9</scope></search><sort><creationdate>201412</creationdate><title>Spatial localization of linear elastic waves in composite materials with defects</title><author>Andrianov, I.V. ; Danishevs'kyy, V.V. ; Kushnierov, I.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4583-205706e9402f906c6bc3403ce0f3c22c4c5f51551e60da90350905c709c060e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Attenuation</topic><topic>Composite material</topic><topic>Composite materials</topic><topic>Defects</topic><topic>Density</topic><topic>dispersion</topic><topic>elastic wave</topic><topic>Localization</topic><topic>Perturbation methods</topic><topic>Plugs</topic><topic>Position (location)</topic><topic>wave localization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrianov, I.V.</creatorcontrib><creatorcontrib>Danishevs'kyy, V.V.</creatorcontrib><creatorcontrib>Kushnierov, I.A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrianov, I.V.</au><au>Danishevs'kyy, V.V.</au><au>Kushnierov, I.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial localization of linear elastic waves in composite materials with defects</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2014-12</date><risdate>2014</risdate><volume>94</volume><issue>12</issue><spage>1001</spage><epage>1010</epage><pages>1001-1010</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>We study the phenomenon of a spatial localization of elastic waves in periodic composite materials with local defects. The wave spectrum in heterogeneous composite solids includes pass and stop frequency bands. If the frequency of the signal falls within a stop band, the group velocity vanishes and the wave attenuates exponentially. In such a case, a local perturbation of the microstructure may lead to the localization of the wave energy in the vicinity of the defect. Longitudinal tension‐compression waves in a layered composite and transverse antiplane shear waves in a unidirectional fibrous composite are considered. Local perturbations of the density and of the volume fractions of the components are taken into account. The analysis is based on the transfer‐matrix method and on the plane‐wave expansions method. As the result, the frequencies of the wave localization and the corresponding attenuation factors are determined. The authors study the phenomenon of a spatial localization of elastic waves in periodic composite materials with local defects. The wave spectrum in heterogeneous composite solids includes pass and stop frequency bands. If the frequency of the signal falls within a stop band, the group velocity vanishes and the wave attenuates exponentially. In such a case, a local perturbation of the microstructure may lead to the localization of the wave energy in the vicinity of the defect. Longitudinal tension‐compression waves in a layered composite and transverse antiplane shear waves in a unidirectional fibrous composite are considered. Local perturbations of the density and of the volume fractions of the components are taken into account. The analysis is based on the transfer‐matrix method and on the plane‐wave expansions method. As the result, the frequencies of the wave localization and the corresponding attenuation factors are determined.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.201200273</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2014-12, Vol.94 (12), p.1001-1010
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_miscellaneous_1660059458
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Attenuation
Composite material
Composite materials
Defects
Density
dispersion
elastic wave
Localization
Perturbation methods
Plugs
Position (location)
wave localization
title Spatial localization of linear elastic waves in composite materials with defects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20localization%20of%20linear%20elastic%20waves%20in%20composite%20materials%20with%20defects&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Andrianov,%20I.V.&rft.date=2014-12&rft.volume=94&rft.issue=12&rft.spage=1001&rft.epage=1010&rft.pages=1001-1010&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201200273&rft_dat=%3Cproquest_cross%3E1660059458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4583-205706e9402f906c6bc3403ce0f3c22c4c5f51551e60da90350905c709c060e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1628963879&rft_id=info:pmid/&rfr_iscdi=true