Loading…

An Efficient Algorithm for Computing the Generalized Null Space Decomposition

The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on matrix analysis and applications 2015-01, Vol.36 (1), p.38-54
Main Authors: Guglielmi, Nicola, Overton, Michael L., Stewart, G. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63
cites cdi_FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63
container_end_page 54
container_issue 1
container_start_page 38
container_title SIAM journal on matrix analysis and applications
container_volume 36
creator Guglielmi, Nicola
Overton, Michael L.
Stewart, G. W.
description The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first by Ruhe and then by Golub and Wilkinson, who based the reduction on the singular value decomposition. Unfortunately, if $A$ has large Jordan blocks, the complexity of these algorithms can approach the order of $n pound sterling $. This paper presents an alternative algorithm, based on repeated updates of a QR decomposition of $A$, that is guaranteed to be of order $n3}$. Numerical experiments confirm the stability of this algorithm, which turns out to produce essentially the same form as that of Golub and Wilkinson. The effect of errors in $A$ on the ability to recover the original structure is investigated empirically. Several applications are discussed, including the computation of the Drazin inverse.
doi_str_mv 10.1137/140956737
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660061293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660061293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63</originalsourceid><addsrcrecordid>eNo9kL1OwzAURi0EEqUw8AYeYQj4xol_xiqUglRgAOYocW5aIycOdjLA0xNUxPSd4egbDiGXwG4AuLyFjOlcSC6PyAJmTCSI9JgsmJo5k1qdkrMYPxgDkWlYkKdVT9dta43FfqQrt_PBjvuOtj7QwnfDNNp-R8c90g32GCpnv7Ghz5Nz9HWoDNI7NLPmox2t78_JSVu5iBd_uyTv9-u34iHZvmwei9U2MamWYyKURlTQmJTzTKYKtGoEgmi0ytOmzQ1TNcgGBdaNAZNleY6iUgBQs1TWgi_J1eF3CP5zwjiWnY0Gnat69FMsQQjGBKSaz-r1QTXBxxiwLYdguyp8lcDK32TlfzL-AyRtXOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660061293</pqid></control><display><type>article</type><title>An Efficient Algorithm for Computing the Generalized Null Space Decomposition</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Guglielmi, Nicola ; Overton, Michael L. ; Stewart, G. W.</creator><creatorcontrib>Guglielmi, Nicola ; Overton, Michael L. ; Stewart, G. W.</creatorcontrib><description>The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first by Ruhe and then by Golub and Wilkinson, who based the reduction on the singular value decomposition. Unfortunately, if $A$ has large Jordan blocks, the complexity of these algorithms can approach the order of $n pound sterling $. This paper presents an alternative algorithm, based on repeated updates of a QR decomposition of $A$, that is guaranteed to be of order $n3}$. Numerical experiments confirm the stability of this algorithm, which turns out to produce essentially the same form as that of Golub and Wilkinson. The effect of errors in $A$ on the ability to recover the original structure is investigated empirically. Several applications are discussed, including the computation of the Drazin inverse.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/140956737</identifier><language>eng</language><subject>Algorithms ; Blocking ; Computation ; Decomposition ; Eigenvalues ; Error analysis ; Inverse ; Reduction</subject><ispartof>SIAM journal on matrix analysis and applications, 2015-01, Vol.36 (1), p.38-54</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63</citedby><cites>FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3172,27905,27906</link.rule.ids></links><search><creatorcontrib>Guglielmi, Nicola</creatorcontrib><creatorcontrib>Overton, Michael L.</creatorcontrib><creatorcontrib>Stewart, G. W.</creatorcontrib><title>An Efficient Algorithm for Computing the Generalized Null Space Decomposition</title><title>SIAM journal on matrix analysis and applications</title><description>The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first by Ruhe and then by Golub and Wilkinson, who based the reduction on the singular value decomposition. Unfortunately, if $A$ has large Jordan blocks, the complexity of these algorithms can approach the order of $n pound sterling $. This paper presents an alternative algorithm, based on repeated updates of a QR decomposition of $A$, that is guaranteed to be of order $n3}$. Numerical experiments confirm the stability of this algorithm, which turns out to produce essentially the same form as that of Golub and Wilkinson. The effect of errors in $A$ on the ability to recover the original structure is investigated empirically. Several applications are discussed, including the computation of the Drazin inverse.</description><subject>Algorithms</subject><subject>Blocking</subject><subject>Computation</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Error analysis</subject><subject>Inverse</subject><subject>Reduction</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAURi0EEqUw8AYeYQj4xol_xiqUglRgAOYocW5aIycOdjLA0xNUxPSd4egbDiGXwG4AuLyFjOlcSC6PyAJmTCSI9JgsmJo5k1qdkrMYPxgDkWlYkKdVT9dta43FfqQrt_PBjvuOtj7QwnfDNNp-R8c90g32GCpnv7Ghz5Nz9HWoDNI7NLPmox2t78_JSVu5iBd_uyTv9-u34iHZvmwei9U2MamWYyKURlTQmJTzTKYKtGoEgmi0ytOmzQ1TNcgGBdaNAZNleY6iUgBQs1TWgi_J1eF3CP5zwjiWnY0Gnat69FMsQQjGBKSaz-r1QTXBxxiwLYdguyp8lcDK32TlfzL-AyRtXOk</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Guglielmi, Nicola</creator><creator>Overton, Michael L.</creator><creator>Stewart, G. W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>An Efficient Algorithm for Computing the Generalized Null Space Decomposition</title><author>Guglielmi, Nicola ; Overton, Michael L. ; Stewart, G. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Blocking</topic><topic>Computation</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Error analysis</topic><topic>Inverse</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guglielmi, Nicola</creatorcontrib><creatorcontrib>Overton, Michael L.</creatorcontrib><creatorcontrib>Stewart, G. W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guglielmi, Nicola</au><au>Overton, Michael L.</au><au>Stewart, G. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm for Computing the Generalized Null Space Decomposition</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2015-01</date><risdate>2015</risdate><volume>36</volume><issue>1</issue><spage>38</spage><epage>54</epage><pages>38-54</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first by Ruhe and then by Golub and Wilkinson, who based the reduction on the singular value decomposition. Unfortunately, if $A$ has large Jordan blocks, the complexity of these algorithms can approach the order of $n pound sterling $. This paper presents an alternative algorithm, based on repeated updates of a QR decomposition of $A$, that is guaranteed to be of order $n3}$. Numerical experiments confirm the stability of this algorithm, which turns out to produce essentially the same form as that of Golub and Wilkinson. The effect of errors in $A$ on the ability to recover the original structure is investigated empirically. Several applications are discussed, including the computation of the Drazin inverse.</abstract><doi>10.1137/140956737</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-4798
ispartof SIAM journal on matrix analysis and applications, 2015-01, Vol.36 (1), p.38-54
issn 0895-4798
1095-7162
language eng
recordid cdi_proquest_miscellaneous_1660061293
source LOCUS - SIAM's Online Journal Archive
subjects Algorithms
Blocking
Computation
Decomposition
Eigenvalues
Error analysis
Inverse
Reduction
title An Efficient Algorithm for Computing the Generalized Null Space Decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20for%20Computing%20the%20Generalized%20Null%20Space%20Decomposition&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Guglielmi,%20Nicola&rft.date=2015-01&rft.volume=36&rft.issue=1&rft.spage=38&rft.epage=54&rft.pages=38-54&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/140956737&rft_dat=%3Cproquest_cross%3E1660061293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660061293&rft_id=info:pmid/&rfr_iscdi=true