Loading…
An Efficient Algorithm for Computing the Generalized Null Space Decomposition
The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first...
Saved in:
Published in: | SIAM journal on matrix analysis and applications 2015-01, Vol.36 (1), p.38-54 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63 |
container_end_page | 54 |
container_issue | 1 |
container_start_page | 38 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 36 |
creator | Guglielmi, Nicola Overton, Michael L. Stewart, G. W. |
description | The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first by Ruhe and then by Golub and Wilkinson, who based the reduction on the singular value decomposition. Unfortunately, if $A$ has large Jordan blocks, the complexity of these algorithms can approach the order of $n pound sterling $. This paper presents an alternative algorithm, based on repeated updates of a QR decomposition of $A$, that is guaranteed to be of order $n3}$. Numerical experiments confirm the stability of this algorithm, which turns out to produce essentially the same form as that of Golub and Wilkinson. The effect of errors in $A$ on the ability to recover the original structure is investigated empirically. Several applications are discussed, including the computation of the Drazin inverse. |
doi_str_mv | 10.1137/140956737 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660061293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660061293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63</originalsourceid><addsrcrecordid>eNo9kL1OwzAURi0EEqUw8AYeYQj4xol_xiqUglRgAOYocW5aIycOdjLA0xNUxPSd4egbDiGXwG4AuLyFjOlcSC6PyAJmTCSI9JgsmJo5k1qdkrMYPxgDkWlYkKdVT9dta43FfqQrt_PBjvuOtj7QwnfDNNp-R8c90g32GCpnv7Ghz5Nz9HWoDNI7NLPmox2t78_JSVu5iBd_uyTv9-u34iHZvmwei9U2MamWYyKURlTQmJTzTKYKtGoEgmi0ytOmzQ1TNcgGBdaNAZNleY6iUgBQs1TWgi_J1eF3CP5zwjiWnY0Gnat69FMsQQjGBKSaz-r1QTXBxxiwLYdguyp8lcDK32TlfzL-AyRtXOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660061293</pqid></control><display><type>article</type><title>An Efficient Algorithm for Computing the Generalized Null Space Decomposition</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Guglielmi, Nicola ; Overton, Michael L. ; Stewart, G. W.</creator><creatorcontrib>Guglielmi, Nicola ; Overton, Michael L. ; Stewart, G. W.</creatorcontrib><description>The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first by Ruhe and then by Golub and Wilkinson, who based the reduction on the singular value decomposition. Unfortunately, if $A$ has large Jordan blocks, the complexity of these algorithms can approach the order of $n pound sterling $. This paper presents an alternative algorithm, based on repeated updates of a QR decomposition of $A$, that is guaranteed to be of order $n3}$. Numerical experiments confirm the stability of this algorithm, which turns out to produce essentially the same form as that of Golub and Wilkinson. The effect of errors in $A$ on the ability to recover the original structure is investigated empirically. Several applications are discussed, including the computation of the Drazin inverse.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/140956737</identifier><language>eng</language><subject>Algorithms ; Blocking ; Computation ; Decomposition ; Eigenvalues ; Error analysis ; Inverse ; Reduction</subject><ispartof>SIAM journal on matrix analysis and applications, 2015-01, Vol.36 (1), p.38-54</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63</citedby><cites>FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3172,27905,27906</link.rule.ids></links><search><creatorcontrib>Guglielmi, Nicola</creatorcontrib><creatorcontrib>Overton, Michael L.</creatorcontrib><creatorcontrib>Stewart, G. W.</creatorcontrib><title>An Efficient Algorithm for Computing the Generalized Null Space Decomposition</title><title>SIAM journal on matrix analysis and applications</title><description>The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first by Ruhe and then by Golub and Wilkinson, who based the reduction on the singular value decomposition. Unfortunately, if $A$ has large Jordan blocks, the complexity of these algorithms can approach the order of $n pound sterling $. This paper presents an alternative algorithm, based on repeated updates of a QR decomposition of $A$, that is guaranteed to be of order $n3}$. Numerical experiments confirm the stability of this algorithm, which turns out to produce essentially the same form as that of Golub and Wilkinson. The effect of errors in $A$ on the ability to recover the original structure is investigated empirically. Several applications are discussed, including the computation of the Drazin inverse.</description><subject>Algorithms</subject><subject>Blocking</subject><subject>Computation</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Error analysis</subject><subject>Inverse</subject><subject>Reduction</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAURi0EEqUw8AYeYQj4xol_xiqUglRgAOYocW5aIycOdjLA0xNUxPSd4egbDiGXwG4AuLyFjOlcSC6PyAJmTCSI9JgsmJo5k1qdkrMYPxgDkWlYkKdVT9dta43FfqQrt_PBjvuOtj7QwnfDNNp-R8c90g32GCpnv7Ghz5Nz9HWoDNI7NLPmox2t78_JSVu5iBd_uyTv9-u34iHZvmwei9U2MamWYyKURlTQmJTzTKYKtGoEgmi0ytOmzQ1TNcgGBdaNAZNleY6iUgBQs1TWgi_J1eF3CP5zwjiWnY0Gnat69FMsQQjGBKSaz-r1QTXBxxiwLYdguyp8lcDK32TlfzL-AyRtXOk</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Guglielmi, Nicola</creator><creator>Overton, Michael L.</creator><creator>Stewart, G. W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>An Efficient Algorithm for Computing the Generalized Null Space Decomposition</title><author>Guglielmi, Nicola ; Overton, Michael L. ; Stewart, G. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Blocking</topic><topic>Computation</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Error analysis</topic><topic>Inverse</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guglielmi, Nicola</creatorcontrib><creatorcontrib>Overton, Michael L.</creatorcontrib><creatorcontrib>Stewart, G. W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guglielmi, Nicola</au><au>Overton, Michael L.</au><au>Stewart, G. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm for Computing the Generalized Null Space Decomposition</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2015-01</date><risdate>2015</risdate><volume>36</volume><issue>1</issue><spage>38</spage><epage>54</epage><pages>38-54</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>The generalized null space decomposition (GNSD) is a unitary reduction of a general matrix $A$ of order $n$ to a block upper triangular form that reveals the structure of the Jordan blocks of $A$ corresponding to a zero eigenvalue. The reduction was introduced by Kublanovskaya. It was extended first by Ruhe and then by Golub and Wilkinson, who based the reduction on the singular value decomposition. Unfortunately, if $A$ has large Jordan blocks, the complexity of these algorithms can approach the order of $n pound sterling $. This paper presents an alternative algorithm, based on repeated updates of a QR decomposition of $A$, that is guaranteed to be of order $n3}$. Numerical experiments confirm the stability of this algorithm, which turns out to produce essentially the same form as that of Golub and Wilkinson. The effect of errors in $A$ on the ability to recover the original structure is investigated empirically. Several applications are discussed, including the computation of the Drazin inverse.</abstract><doi>10.1137/140956737</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 2015-01, Vol.36 (1), p.38-54 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660061293 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Algorithms Blocking Computation Decomposition Eigenvalues Error analysis Inverse Reduction |
title | An Efficient Algorithm for Computing the Generalized Null Space Decomposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20for%20Computing%20the%20Generalized%20Null%20Space%20Decomposition&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Guglielmi,%20Nicola&rft.date=2015-01&rft.volume=36&rft.issue=1&rft.spage=38&rft.epage=54&rft.pages=38-54&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/140956737&rft_dat=%3Cproquest_cross%3E1660061293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-689ee81dc2334728198d6e16d9852df5c08b17de6ebdc1c4455e6a8111b027b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660061293&rft_id=info:pmid/&rfr_iscdi=true |