Loading…
Optical fiber spectroelectrochemical device for detection of catechol at press-transferred single-walled carbon nanotubes electrodes
A new long-optical-pathway spectroelectrochemical cell for absorptometric measurements in the UV–Vis region was developed. This cell consists of two optical fibers brought face to face and fixed on the working electrode support. As a proof of concept, the spectroelectrochemical cell was applied to t...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2013-04, Vol.405 (11), p.3593-3602 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new long-optical-pathway spectroelectrochemical cell for absorptometric measurements in the UV–Vis region was developed. This cell consists of two optical fibers brought face to face and fixed on the working electrode support. As a proof of concept, the spectroelectrochemical cell was applied to the determination of catechol using a press-transferred single-walled carbon nanotube film as the working electrode. Voltabsorptometry was demonstrated to be very helpful in understanding the mechanism of catechol oxidation. The experiments showed that the main oxidation product is
o
-benzoquinone, but other soluble side products are also observed. Multivariate calibration explains the selection of 390 nm as the best wavelength for the univariate absorptometric determination of catechol, avoiding the interference of oxidation side products. Catechol was quantified using both the electrochemical and the spectroscopic signal, demonstrating that this hybrid technique is an autovalidated analytical method. Dual detection of catechol was also carried out using amperometric spectroelectrochemistry. Finally, spectroelectrochemistry was used to quantify catechol in the presence of hydroquinone. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-013-6762-z |