Loading…
Polyurethane–extracellular matrix/silver bionanocomposites for urinary catheters
Polyurethane–extracellular matrix membranes with bionanocomposites or coatings containing a small amount of biocompatible polymers such as hydrolyzed collagen, elastin, hyaluronic acid or chondroitin sulfate, and silver were obtained by solvent casting or electrospinning/electrospraying of the polyu...
Saved in:
Published in: | Journal of bioactive and compatible polymers 2015-01, Vol.30 (1), p.99-113 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyurethane–extracellular matrix membranes with bionanocomposites or coatings containing a small amount of biocompatible polymers such as hydrolyzed collagen, elastin, hyaluronic acid or chondroitin sulfate, and silver were obtained by solvent casting or electrospinning/electrospraying of the polyurethane–extracellular matrix–Ag formulations onto pure polyurethane membrane in order to achieve improved antibacterial biomaterials for urinary catheters. Using Fourier transform infrared spectroscopy, the interaction of the incorporated silver nanoparticles with polyurethane–extracellular matrix was found, while X-ray photoelectron spectroscopy and X-ray diffraction analyses ws used to determine the presence of metallic Ag for polyurethane membrane and Ag only in oxidized state for polyurethane–extracellular matrix membranes due to the stabilizing effect of polymeric components. The in vitro antimicrobial tests against Escherichia coli, Salmonella typhymurium, and Listeria monocytogenes were used for the evaluation of the antimicrobial efficiency. |
---|---|
ISSN: | 0883-9115 1530-8030 |
DOI: | 10.1177/0883911514560661 |