Loading…
Internally Self-Sustaining Electric Power Generation
SUMMARY The electrical double layer capacitor‐electrostatic induction electric power generation system (EDLC‐ESIG) undergoes an electric cycle consisting of three steps: energy storage by electrostatic induction, power generation, and initialization by electromechanical coupling. An internally self‐...
Saved in:
Published in: | Electrical engineering in Japan 2015-03, Vol.190 (4), p.11-18 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | SUMMARY
The electrical double layer capacitor‐electrostatic induction electric power generation system (EDLC‐ESIG) undergoes an electric cycle consisting of three steps: energy storage by electrostatic induction, power generation, and initialization by electromechanical coupling. An internally self‐sustaining electric power can be generated by repetition of cycles with periods of the order of seconds. The objective of this paper is to show the design of EDLC‐cell configuration for practical use to produce constant power output. On the basis of energy densities of the conventional EDLCs for energy storage, the volumetric power density has been estimated to be 450 W/L for the discharge time of 10 s. Possibilities of commercial applications of the EDLC‐ESIG system to vehicles and high power generations in central station have been considered with respect to the power densities of the EDLC‐cells consolidated into a generation system. |
---|---|
ISSN: | 0424-7760 1520-6416 |
DOI: | 10.1002/eej.22661 |