Loading…

High temperature deformation behavior of Mg67Zn28Ca5 metallic glass and its composites

Mg67Zn28Ca5 amorphous alloy specimens with various volume percentage of crystalline phases were obtained by annealing fully amorphous alloy at slightly above crystallization temperature. Strain rate effect of flow stress of Mg67Zn28Ca5 amorphous alloy and its composites at supercooled liquid region...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-01, Vol.621, p.1-7
Main Authors: Fu, X.L., Tan, M.J., Chen, Y., Jarfors, A.E.W., Gupta, M., Shek, C.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mg67Zn28Ca5 amorphous alloy specimens with various volume percentage of crystalline phases were obtained by annealing fully amorphous alloy at slightly above crystallization temperature. Strain rate effect of flow stress of Mg67Zn28Ca5 amorphous alloy and its composites at supercooled liquid region were studied. The strain rate sensitivity m for monolithic metallic glass can approach 1, but all the composites have lower strain rate sensitivity (~0.17). After a prolonged testing period, the deformation mode of Mg67Zn28Ca5 based composites changed from superplastically into fragmentation mode. Glassy Mg67Zn28Ca5 exhibits the best superplasticity and thermal stability compared to its devitrified composites.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2014.10.051