Loading…
A Hybrid Particle–Ensemble Kalman Filter for Lagrangian Data Assimilation
Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating and forecasting the ocean's state (velocity field, salinity field, etc.). However, trajectories from these instruments are often highly nonlinear, leading to difficulties with widely used data...
Saved in:
Published in: | Monthly weather review 2015-01, Vol.143 (1), p.195-211 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-fd6561d433e967ca77dd3abd2cb6abd8fb624383a5209344c4a023ffc9a35bac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-fd6561d433e967ca77dd3abd2cb6abd8fb624383a5209344c4a023ffc9a35bac3 |
container_end_page | 211 |
container_issue | 1 |
container_start_page | 195 |
container_title | Monthly weather review |
container_volume | 143 |
creator | Slivinski, Laura Spiller, Elaine Apte, Amit Sandstede, Bjorn |
description | Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating and forecasting the ocean's state (velocity field, salinity field, etc.). However, trajectories from these instruments are often highly nonlinear, leading to difficulties with widely used data assimilation algorithms such as the ensemble Kalman filter (EnKF). Additionally, the velocity field is often modeled as a high-dimensional variable, which precludes the use of more accurate methods such as the particle filter (PF). Here, a hybrid particle-ensemble Kalman filter is developed that applies the EnKF update to the potentially high-dimensional velocity variables, and the PF update to the relatively low-dimensional, highly nonlinear drifter position variable. This algorithm is tested with twin experiments on the linear shallow water equations. In experiments with infrequent observations, the hybrid filter consistently outperformed the EnKF, both by better capturing the Bayesian posterior and by better tracking the truth. |
doi_str_mv | 10.1175/MWR-D-14-00051.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660071805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660071805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-fd6561d433e967ca77dd3abd2cb6abd8fb624383a5209344c4a023ffc9a35bac3</originalsourceid><addsrcrecordid>eNqNkbFOwzAURS0EEqWwM0ZiYXGxY8dJxqqlFLUIhECM1otjV66cpNjp0I1_4A_5EkzLxMR0paejq_t0ELqkZERpnt08vD3jKaYcE0IyOqJHaECzlGDCS3aMBoSkOSaC81N0FsI6QkLwdIAW42S-q7ytkyfwvVVOf3183rZBN5XTyQJcA20ys67XPjGdT5aw8tCubLxOoYdkHIJtrIPedu05OjHggr74zSF6nd2-TOZ4-Xh3PxkvsWJ52WNTi0zQmjOmS5EryPO6ZlDVqapEjMJUIuWsYBDnl4xzxYGkzBhVAssqUGyIrg-9G9-9b3XoZWOD0s5Bq7ttkFQIQnJakOwfaMZFIbigEb36g667rW_jI5HighW83BeSA6V8F4LXRm68bcDvJCXyR4SMIuRUUi73IiRl3zFnexw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646384905</pqid></control><display><type>article</type><title>A Hybrid Particle–Ensemble Kalman Filter for Lagrangian Data Assimilation</title><source>EZB Electronic Journals Library</source><creator>Slivinski, Laura ; Spiller, Elaine ; Apte, Amit ; Sandstede, Bjorn</creator><creatorcontrib>Slivinski, Laura ; Spiller, Elaine ; Apte, Amit ; Sandstede, Bjorn</creatorcontrib><description>Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating and forecasting the ocean's state (velocity field, salinity field, etc.). However, trajectories from these instruments are often highly nonlinear, leading to difficulties with widely used data assimilation algorithms such as the ensemble Kalman filter (EnKF). Additionally, the velocity field is often modeled as a high-dimensional variable, which precludes the use of more accurate methods such as the particle filter (PF). Here, a hybrid particle-ensemble Kalman filter is developed that applies the EnKF update to the potentially high-dimensional velocity variables, and the PF update to the relatively low-dimensional, highly nonlinear drifter position variable. This algorithm is tested with twin experiments on the linear shallow water equations. In experiments with infrequent observations, the hybrid filter consistently outperformed the EnKF, both by better capturing the Bayesian posterior and by better tracking the truth.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-14-00051.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Algorithms ; Climatology ; Data assimilation ; Data collection ; Kalman filters ; Mathematical models ; Meteorology ; Nonlinearity ; Oceans ; Shallow water ; Weather</subject><ispartof>Monthly weather review, 2015-01, Vol.143 (1), p.195-211</ispartof><rights>Copyright American Meteorological Society Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-fd6561d433e967ca77dd3abd2cb6abd8fb624383a5209344c4a023ffc9a35bac3</citedby><cites>FETCH-LOGICAL-c379t-fd6561d433e967ca77dd3abd2cb6abd8fb624383a5209344c4a023ffc9a35bac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Slivinski, Laura</creatorcontrib><creatorcontrib>Spiller, Elaine</creatorcontrib><creatorcontrib>Apte, Amit</creatorcontrib><creatorcontrib>Sandstede, Bjorn</creatorcontrib><title>A Hybrid Particle–Ensemble Kalman Filter for Lagrangian Data Assimilation</title><title>Monthly weather review</title><description>Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating and forecasting the ocean's state (velocity field, salinity field, etc.). However, trajectories from these instruments are often highly nonlinear, leading to difficulties with widely used data assimilation algorithms such as the ensemble Kalman filter (EnKF). Additionally, the velocity field is often modeled as a high-dimensional variable, which precludes the use of more accurate methods such as the particle filter (PF). Here, a hybrid particle-ensemble Kalman filter is developed that applies the EnKF update to the potentially high-dimensional velocity variables, and the PF update to the relatively low-dimensional, highly nonlinear drifter position variable. This algorithm is tested with twin experiments on the linear shallow water equations. In experiments with infrequent observations, the hybrid filter consistently outperformed the EnKF, both by better capturing the Bayesian posterior and by better tracking the truth.</description><subject>Algorithms</subject><subject>Climatology</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Nonlinearity</subject><subject>Oceans</subject><subject>Shallow water</subject><subject>Weather</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkbFOwzAURS0EEqWwM0ZiYXGxY8dJxqqlFLUIhECM1otjV66cpNjp0I1_4A_5EkzLxMR0paejq_t0ELqkZERpnt08vD3jKaYcE0IyOqJHaECzlGDCS3aMBoSkOSaC81N0FsI6QkLwdIAW42S-q7ytkyfwvVVOf3183rZBN5XTyQJcA20ys67XPjGdT5aw8tCubLxOoYdkHIJtrIPedu05OjHggr74zSF6nd2-TOZ4-Xh3PxkvsWJ52WNTi0zQmjOmS5EryPO6ZlDVqapEjMJUIuWsYBDnl4xzxYGkzBhVAssqUGyIrg-9G9-9b3XoZWOD0s5Bq7ttkFQIQnJakOwfaMZFIbigEb36g667rW_jI5HighW83BeSA6V8F4LXRm68bcDvJCXyR4SMIuRUUi73IiRl3zFnexw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Slivinski, Laura</creator><creator>Spiller, Elaine</creator><creator>Apte, Amit</creator><creator>Sandstede, Bjorn</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150101</creationdate><title>A Hybrid Particle–Ensemble Kalman Filter for Lagrangian Data Assimilation</title><author>Slivinski, Laura ; Spiller, Elaine ; Apte, Amit ; Sandstede, Bjorn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-fd6561d433e967ca77dd3abd2cb6abd8fb624383a5209344c4a023ffc9a35bac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Climatology</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Nonlinearity</topic><topic>Oceans</topic><topic>Shallow water</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slivinski, Laura</creatorcontrib><creatorcontrib>Spiller, Elaine</creatorcontrib><creatorcontrib>Apte, Amit</creatorcontrib><creatorcontrib>Sandstede, Bjorn</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slivinski, Laura</au><au>Spiller, Elaine</au><au>Apte, Amit</au><au>Sandstede, Bjorn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Particle–Ensemble Kalman Filter for Lagrangian Data Assimilation</atitle><jtitle>Monthly weather review</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>143</volume><issue>1</issue><spage>195</spage><epage>211</epage><pages>195-211</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating and forecasting the ocean's state (velocity field, salinity field, etc.). However, trajectories from these instruments are often highly nonlinear, leading to difficulties with widely used data assimilation algorithms such as the ensemble Kalman filter (EnKF). Additionally, the velocity field is often modeled as a high-dimensional variable, which precludes the use of more accurate methods such as the particle filter (PF). Here, a hybrid particle-ensemble Kalman filter is developed that applies the EnKF update to the potentially high-dimensional velocity variables, and the PF update to the relatively low-dimensional, highly nonlinear drifter position variable. This algorithm is tested with twin experiments on the linear shallow water equations. In experiments with infrequent observations, the hybrid filter consistently outperformed the EnKF, both by better capturing the Bayesian posterior and by better tracking the truth.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-14-00051.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2015-01, Vol.143 (1), p.195-211 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660071805 |
source | EZB Electronic Journals Library |
subjects | Algorithms Climatology Data assimilation Data collection Kalman filters Mathematical models Meteorology Nonlinearity Oceans Shallow water Weather |
title | A Hybrid Particle–Ensemble Kalman Filter for Lagrangian Data Assimilation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Particle%E2%80%93Ensemble%20Kalman%20Filter%20for%20Lagrangian%20Data%20Assimilation&rft.jtitle=Monthly%20weather%20review&rft.au=Slivinski,%20Laura&rft.date=2015-01-01&rft.volume=143&rft.issue=1&rft.spage=195&rft.epage=211&rft.pages=195-211&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/MWR-D-14-00051.1&rft_dat=%3Cproquest_cross%3E1660071805%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-fd6561d433e967ca77dd3abd2cb6abd8fb624383a5209344c4a023ffc9a35bac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1646384905&rft_id=info:pmid/&rfr_iscdi=true |