Loading…
Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants
The present study addresses the deposition of a duplex coating by microarc oxidation (MAO) treatment and polycaprolactone (PCL) coating to improve the corrosion resistance of Mg. A uniform PCL coating layer is formed by dip coating method on MAO treated Mg, and the corrosion resistance of MAO–PCL du...
Saved in:
Published in: | Thin solid films 2014-07, Vol.562, p.561-567 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-7d97fafbd5a0c6a6399011b1e1fbe3b058195963e6f7f68b91992cf9a0252c803 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-7d97fafbd5a0c6a6399011b1e1fbe3b058195963e6f7f68b91992cf9a0252c803 |
container_end_page | 567 |
container_issue | |
container_start_page | 561 |
container_title | Thin solid films |
container_volume | 562 |
creator | Li, Long-Hao Sankara Narayanan, T.S.N. Kim, Yu Kyoung Kong, Young-Min Park, Il Song Bae, Tae Sung Lee, Min Ho |
description | The present study addresses the deposition of a duplex coating by microarc oxidation (MAO) treatment and polycaprolactone (PCL) coating to improve the corrosion resistance of Mg. A uniform PCL coating layer is formed by dip coating method on MAO treated Mg, and the corrosion resistance of MAO–PCL duplex coated Mg is evaluated by potentiodynamic polarization study and immersion test. The results reveal that the porous nature of MAO treated Mg fails to offer a better corrosion resistance in Hanks' balanced salt solution (HBSS). However, deposition of PCL coating (using 4 and 7wt.% PCL) over MAO treated Mg significantly increased the corrosion resistance of Mg in HBSS for 7days. The MAO–PCL duplex coating can be a good alternative method of protecting Mg from rapid corrosion for biodegradable implant applications.
•Polycaprolactone (PCL) is uniformly coated on microarc oxidation (MAO) treated Mg.•The PCL coating helps to seal the pores of the MAO treated Mg.•MAO–PCL duplex coating significantly improved the corrosion resistance of Mg. |
doi_str_mv | 10.1016/j.tsf.2014.04.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660073895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609014004052</els_id><sourcerecordid>1660073895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-7d97fafbd5a0c6a6399011b1e1fbe3b058195963e6f7f68b91992cf9a0252c803</originalsourceid><addsrcrecordid>eNqNUcFu1DAUjBCVWAofwM0XJC5Znp3YicUJldIiVeICZ8txnhevkjjY3qq98QVc-MN-CW_ZiiNCepKl8cy8p5mqesVhy4Grt_ttyX4rgLdboIH2SbXhfadr0TX8abUhBGoFGp5Vz3PeAwAXotlUPz_gGnMoIS4sejYHl6JNjsW7MNoj-vDj1xqne2fXFCfrSlyQjYd1wjvmIjGWHSuRhZm-b5GVb0hwSmRJhglzyMUuDv94291CwGFmPiY2hDjiLtnRDhMe9ZNdSn5RnXk7ZXz5-J5XXz9efrm4rm8-X326eH9Tu1bqUnej7rz1wygtOGVVozVwPnDkfsBmANlzLbVqUPnOq37QXGvhvLYgpHA9NOfVm5Mvnf39gLmYOWSHEx2B8ZANVwqga3ot_4MqW6WFBEFUfqJSiDkn9GZNYbbp3nAwx5rM3lBN5liTARpoSfP60d5mZyefKK6Q_wpFL5tedYp47048pFhuAyaTXUCKdgwJXTFjDP_Y8htABKxt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654692502</pqid></control><display><type>article</type><title>Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants</title><source>ScienceDirect Freedom Collection</source><creator>Li, Long-Hao ; Sankara Narayanan, T.S.N. ; Kim, Yu Kyoung ; Kong, Young-Min ; Park, Il Song ; Bae, Tae Sung ; Lee, Min Ho</creator><creatorcontrib>Li, Long-Hao ; Sankara Narayanan, T.S.N. ; Kim, Yu Kyoung ; Kong, Young-Min ; Park, Il Song ; Bae, Tae Sung ; Lee, Min Ho</creatorcontrib><description>The present study addresses the deposition of a duplex coating by microarc oxidation (MAO) treatment and polycaprolactone (PCL) coating to improve the corrosion resistance of Mg. A uniform PCL coating layer is formed by dip coating method on MAO treated Mg, and the corrosion resistance of MAO–PCL duplex coated Mg is evaluated by potentiodynamic polarization study and immersion test. The results reveal that the porous nature of MAO treated Mg fails to offer a better corrosion resistance in Hanks' balanced salt solution (HBSS). However, deposition of PCL coating (using 4 and 7wt.% PCL) over MAO treated Mg significantly increased the corrosion resistance of Mg in HBSS for 7days. The MAO–PCL duplex coating can be a good alternative method of protecting Mg from rapid corrosion for biodegradable implant applications.
•Polycaprolactone (PCL) is uniformly coated on microarc oxidation (MAO) treated Mg.•The PCL coating helps to seal the pores of the MAO treated Mg.•MAO–PCL duplex coating significantly improved the corrosion resistance of Mg.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2014.04.004</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biodegradability ; Biodegradation ; Coating ; Corrosion resistance ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Exact sciences and technology ; Immersion test ; Implants ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Magnesium ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Micro-arc oxidation ; Physics ; Polycaprolactone ; Potentiodynamic polarization ; Protective coatings</subject><ispartof>Thin solid films, 2014-07, Vol.562, p.561-567</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-7d97fafbd5a0c6a6399011b1e1fbe3b058195963e6f7f68b91992cf9a0252c803</citedby><cites>FETCH-LOGICAL-c459t-7d97fafbd5a0c6a6399011b1e1fbe3b058195963e6f7f68b91992cf9a0252c803</cites><orcidid>0000-0002-7081-2907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28538676$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Long-Hao</creatorcontrib><creatorcontrib>Sankara Narayanan, T.S.N.</creatorcontrib><creatorcontrib>Kim, Yu Kyoung</creatorcontrib><creatorcontrib>Kong, Young-Min</creatorcontrib><creatorcontrib>Park, Il Song</creatorcontrib><creatorcontrib>Bae, Tae Sung</creatorcontrib><creatorcontrib>Lee, Min Ho</creatorcontrib><title>Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants</title><title>Thin solid films</title><description>The present study addresses the deposition of a duplex coating by microarc oxidation (MAO) treatment and polycaprolactone (PCL) coating to improve the corrosion resistance of Mg. A uniform PCL coating layer is formed by dip coating method on MAO treated Mg, and the corrosion resistance of MAO–PCL duplex coated Mg is evaluated by potentiodynamic polarization study and immersion test. The results reveal that the porous nature of MAO treated Mg fails to offer a better corrosion resistance in Hanks' balanced salt solution (HBSS). However, deposition of PCL coating (using 4 and 7wt.% PCL) over MAO treated Mg significantly increased the corrosion resistance of Mg in HBSS for 7days. The MAO–PCL duplex coating can be a good alternative method of protecting Mg from rapid corrosion for biodegradable implant applications.
•Polycaprolactone (PCL) is uniformly coated on microarc oxidation (MAO) treated Mg.•The PCL coating helps to seal the pores of the MAO treated Mg.•MAO–PCL duplex coating significantly improved the corrosion resistance of Mg.</description><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Coating</subject><subject>Corrosion resistance</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Exact sciences and technology</subject><subject>Immersion test</subject><subject>Implants</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Magnesium</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Micro-arc oxidation</subject><subject>Physics</subject><subject>Polycaprolactone</subject><subject>Potentiodynamic polarization</subject><subject>Protective coatings</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUcFu1DAUjBCVWAofwM0XJC5Znp3YicUJldIiVeICZ8txnhevkjjY3qq98QVc-MN-CW_ZiiNCepKl8cy8p5mqesVhy4Grt_ttyX4rgLdboIH2SbXhfadr0TX8abUhBGoFGp5Vz3PeAwAXotlUPz_gGnMoIS4sejYHl6JNjsW7MNoj-vDj1xqne2fXFCfrSlyQjYd1wjvmIjGWHSuRhZm-b5GVb0hwSmRJhglzyMUuDv94291CwGFmPiY2hDjiLtnRDhMe9ZNdSn5RnXk7ZXz5-J5XXz9efrm4rm8-X326eH9Tu1bqUnej7rz1wygtOGVVozVwPnDkfsBmANlzLbVqUPnOq37QXGvhvLYgpHA9NOfVm5Mvnf39gLmYOWSHEx2B8ZANVwqga3ot_4MqW6WFBEFUfqJSiDkn9GZNYbbp3nAwx5rM3lBN5liTARpoSfP60d5mZyefKK6Q_wpFL5tedYp47048pFhuAyaTXUCKdgwJXTFjDP_Y8htABKxt</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Li, Long-Hao</creator><creator>Sankara Narayanan, T.S.N.</creator><creator>Kim, Yu Kyoung</creator><creator>Kong, Young-Min</creator><creator>Park, Il Song</creator><creator>Bae, Tae Sung</creator><creator>Lee, Min Ho</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7081-2907</orcidid></search><sort><creationdate>20140701</creationdate><title>Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants</title><author>Li, Long-Hao ; Sankara Narayanan, T.S.N. ; Kim, Yu Kyoung ; Kong, Young-Min ; Park, Il Song ; Bae, Tae Sung ; Lee, Min Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-7d97fafbd5a0c6a6399011b1e1fbe3b058195963e6f7f68b91992cf9a0252c803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Coating</topic><topic>Corrosion resistance</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Exact sciences and technology</topic><topic>Immersion test</topic><topic>Implants</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Magnesium</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Micro-arc oxidation</topic><topic>Physics</topic><topic>Polycaprolactone</topic><topic>Potentiodynamic polarization</topic><topic>Protective coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Long-Hao</creatorcontrib><creatorcontrib>Sankara Narayanan, T.S.N.</creatorcontrib><creatorcontrib>Kim, Yu Kyoung</creatorcontrib><creatorcontrib>Kong, Young-Min</creatorcontrib><creatorcontrib>Park, Il Song</creatorcontrib><creatorcontrib>Bae, Tae Sung</creatorcontrib><creatorcontrib>Lee, Min Ho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Long-Hao</au><au>Sankara Narayanan, T.S.N.</au><au>Kim, Yu Kyoung</au><au>Kong, Young-Min</au><au>Park, Il Song</au><au>Bae, Tae Sung</au><au>Lee, Min Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants</atitle><jtitle>Thin solid films</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>562</volume><spage>561</spage><epage>567</epage><pages>561-567</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The present study addresses the deposition of a duplex coating by microarc oxidation (MAO) treatment and polycaprolactone (PCL) coating to improve the corrosion resistance of Mg. A uniform PCL coating layer is formed by dip coating method on MAO treated Mg, and the corrosion resistance of MAO–PCL duplex coated Mg is evaluated by potentiodynamic polarization study and immersion test. The results reveal that the porous nature of MAO treated Mg fails to offer a better corrosion resistance in Hanks' balanced salt solution (HBSS). However, deposition of PCL coating (using 4 and 7wt.% PCL) over MAO treated Mg significantly increased the corrosion resistance of Mg in HBSS for 7days. The MAO–PCL duplex coating can be a good alternative method of protecting Mg from rapid corrosion for biodegradable implant applications.
•Polycaprolactone (PCL) is uniformly coated on microarc oxidation (MAO) treated Mg.•The PCL coating helps to seal the pores of the MAO treated Mg.•MAO–PCL duplex coating significantly improved the corrosion resistance of Mg.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2014.04.004</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7081-2907</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2014-07, Vol.562, p.561-567 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660073895 |
source | ScienceDirect Freedom Collection |
subjects | Biodegradability Biodegradation Coating Corrosion resistance Cross-disciplinary physics: materials science rheology Deposition Exact sciences and technology Immersion test Implants Liquid phase epitaxy deposition from liquid phases (melts, solutions, and surface layers on liquids) Magnesium Materials science Methods of deposition of films and coatings film growth and epitaxy Micro-arc oxidation Physics Polycaprolactone Potentiodynamic polarization Protective coatings |
title | Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deposition%20of%20microarc%20oxidation%E2%80%93polycaprolactone%20duplex%20coating%20to%20improve%20the%20corrosion%20resistance%20of%20magnesium%20for%20biodegradable%20implants&rft.jtitle=Thin%20solid%20films&rft.au=Li,%20Long-Hao&rft.date=2014-07-01&rft.volume=562&rft.spage=561&rft.epage=567&rft.pages=561-567&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2014.04.004&rft_dat=%3Cproquest_cross%3E1660073895%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-7d97fafbd5a0c6a6399011b1e1fbe3b058195963e6f7f68b91992cf9a0252c803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1654692502&rft_id=info:pmid/&rfr_iscdi=true |