Loading…

Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios

The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity a...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2015-02, Vol.506-507, p.391-400
Main Authors: Yang, Tzu-Ting, Lin, Shaw-Tao, Lin, Tser-Sheng, Chung, Hua-Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17-78.72 mg/g, 26,139.80-35,932.98 and 5735.22-13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26-83.70% and 16.30-29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82-797.76 ng/g) was approximately 6.92-25.08 times higher than that of the gaseous phase (26.27-36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO3) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2014.11.029