Loading…

Variable-fidelity optimization with design space reduction

Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce t...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of aeronautics 2013-08, Vol.26 (4), p.841-849
Main Authors: Zahir, Mohammad Kashif, Gao, Zhenghong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-4ace04e0e350d0995c50ddba40b0da0da97d4ace45d6d76e27cd1e183ec1dd193
cites cdi_FETCH-LOGICAL-c399t-4ace04e0e350d0995c50ddba40b0da0da97d4ace45d6d76e27cd1e183ec1dd193
container_end_page 849
container_issue 4
container_start_page 841
container_title Chinese journal of aeronautics
container_volume 26
creator Zahir, Mohammad Kashif
Gao, Zhenghong
description Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce the size of a design space to a smaller region of interest allowing a more accurate surrogate model to be generated. The framework requires a set of models of different physical or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identifying the small region of interest in the design space that encloses the high-fidelity optimum. A surrogate model is then constructed to match the low-fidelity model to the high-fidelity model in the identified region of interest. The optimization process is managed by an update strategy to prevent convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing up to 39% time savings.
doi_str_mv 10.1016/j.cja.2013.06.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660085073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>46934270</cqvip_id><els_id>S100093611300126X</els_id><sourcerecordid>1660085073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-4ace04e0e350d0995c50ddba40b0da0da97d4ace45d6d76e27cd1e183ec1dd193</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxT2ARCl8ALawsSSc48SpYUIV_6RKLMBqufa1vShNWjsFlU-Po1aMSCe94d7vnu4xdsUh48DlbZ3Z2mQ5cJGBzADyEzbiAJAqIfkZOw-hBhCq4jBid5_Gk5k3mC7IYUP9Puk2Pa3px_TUtck39avEYaBlm4SNsZh4dDs77C7Y6cI0AS-POmYfT4_v05d09vb8On2YpVYo1adFhKBAQFGCA6VKG9XNTQFzcCaOqtzgKUonXSUxr6zjyCcCLXeOKzFmN4e7G99tdxh6vaZgsWlMi90uaC4lwKSESkQrP1it70LwuNAbT2vj95qDHrrRtY7d6KEbDVLHbiJzf2Aw_vBF6HWwhK1FRx5tr11H_9LXx8RV1y631C7_IgupRJFXIH4B-F56UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660085073</pqid></control><display><type>article</type><title>Variable-fidelity optimization with design space reduction</title><source>ScienceDirect Journals</source><creator>Zahir, Mohammad Kashif ; Gao, Zhenghong</creator><creatorcontrib>Zahir, Mohammad Kashif ; Gao, Zhenghong</creatorcontrib><description>Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce the size of a design space to a smaller region of interest allowing a more accurate surrogate model to be generated. The framework requires a set of models of different physical or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identifying the small region of interest in the design space that encloses the high-fidelity optimum. A surrogate model is then constructed to match the low-fidelity model to the high-fidelity model in the identified region of interest. The optimization process is managed by an update strategy to prevent convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing up to 39% time savings.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2013.06.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aircraft ; Airfoil optimization ; Algorithms ; Computational efficiency ; Construction ; Curse of dimensionality ; Design engineering ; Design space reduction ; Genetic algorithms ; Kriging ; Mathematical models ; Optimization ; Reduction ; Shape optimization ; Surrogate models ; Surrogate update strategies ; Variable fidelity ; 优化问题 ; 可变 ; 工程系统 ; 感兴趣区域 ; 真模型 ; 设计空间 ; 高保真 ; 高逼真度</subject><ispartof>Chinese journal of aeronautics, 2013-08, Vol.26 (4), p.841-849</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-4ace04e0e350d0995c50ddba40b0da0da97d4ace45d6d76e27cd1e183ec1dd193</citedby><cites>FETCH-LOGICAL-c399t-4ace04e0e350d0995c50ddba40b0da0da97d4ace45d6d76e27cd1e183ec1dd193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83889X/83889X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S100093611300126X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Zahir, Mohammad Kashif</creatorcontrib><creatorcontrib>Gao, Zhenghong</creatorcontrib><title>Variable-fidelity optimization with design space reduction</title><title>Chinese journal of aeronautics</title><addtitle>Chinese Journal of Aeronautics</addtitle><description>Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce the size of a design space to a smaller region of interest allowing a more accurate surrogate model to be generated. The framework requires a set of models of different physical or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identifying the small region of interest in the design space that encloses the high-fidelity optimum. A surrogate model is then constructed to match the low-fidelity model to the high-fidelity model in the identified region of interest. The optimization process is managed by an update strategy to prevent convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing up to 39% time savings.</description><subject>Aircraft</subject><subject>Airfoil optimization</subject><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Construction</subject><subject>Curse of dimensionality</subject><subject>Design engineering</subject><subject>Design space reduction</subject><subject>Genetic algorithms</subject><subject>Kriging</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Reduction</subject><subject>Shape optimization</subject><subject>Surrogate models</subject><subject>Surrogate update strategies</subject><subject>Variable fidelity</subject><subject>优化问题</subject><subject>可变</subject><subject>工程系统</subject><subject>感兴趣区域</subject><subject>真模型</subject><subject>设计空间</subject><subject>高保真</subject><subject>高逼真度</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxT2ARCl8ALawsSSc48SpYUIV_6RKLMBqufa1vShNWjsFlU-Po1aMSCe94d7vnu4xdsUh48DlbZ3Z2mQ5cJGBzADyEzbiAJAqIfkZOw-hBhCq4jBid5_Gk5k3mC7IYUP9Puk2Pa3px_TUtck39avEYaBlm4SNsZh4dDs77C7Y6cI0AS-POmYfT4_v05d09vb8On2YpVYo1adFhKBAQFGCA6VKG9XNTQFzcCaOqtzgKUonXSUxr6zjyCcCLXeOKzFmN4e7G99tdxh6vaZgsWlMi90uaC4lwKSESkQrP1it70LwuNAbT2vj95qDHrrRtY7d6KEbDVLHbiJzf2Aw_vBF6HWwhK1FRx5tr11H_9LXx8RV1y631C7_IgupRJFXIH4B-F56UQ</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Zahir, Mohammad Kashif</creator><creator>Gao, Zhenghong</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Variable-fidelity optimization with design space reduction</title><author>Zahir, Mohammad Kashif ; Gao, Zhenghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-4ace04e0e350d0995c50ddba40b0da0da97d4ace45d6d76e27cd1e183ec1dd193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aircraft</topic><topic>Airfoil optimization</topic><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Construction</topic><topic>Curse of dimensionality</topic><topic>Design engineering</topic><topic>Design space reduction</topic><topic>Genetic algorithms</topic><topic>Kriging</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Reduction</topic><topic>Shape optimization</topic><topic>Surrogate models</topic><topic>Surrogate update strategies</topic><topic>Variable fidelity</topic><topic>优化问题</topic><topic>可变</topic><topic>工程系统</topic><topic>感兴趣区域</topic><topic>真模型</topic><topic>设计空间</topic><topic>高保真</topic><topic>高逼真度</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahir, Mohammad Kashif</creatorcontrib><creatorcontrib>Gao, Zhenghong</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahir, Mohammad Kashif</au><au>Gao, Zhenghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable-fidelity optimization with design space reduction</atitle><jtitle>Chinese journal of aeronautics</jtitle><addtitle>Chinese Journal of Aeronautics</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>26</volume><issue>4</issue><spage>841</spage><epage>849</epage><pages>841-849</pages><issn>1000-9361</issn><abstract>Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce the size of a design space to a smaller region of interest allowing a more accurate surrogate model to be generated. The framework requires a set of models of different physical or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identifying the small region of interest in the design space that encloses the high-fidelity optimum. A surrogate model is then constructed to match the low-fidelity model to the high-fidelity model in the identified region of interest. The optimization process is managed by an update strategy to prevent convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing up to 39% time savings.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2013.06.002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2013-08, Vol.26 (4), p.841-849
issn 1000-9361
language eng
recordid cdi_proquest_miscellaneous_1660085073
source ScienceDirect Journals
subjects Aircraft
Airfoil optimization
Algorithms
Computational efficiency
Construction
Curse of dimensionality
Design engineering
Design space reduction
Genetic algorithms
Kriging
Mathematical models
Optimization
Reduction
Shape optimization
Surrogate models
Surrogate update strategies
Variable fidelity
优化问题
可变
工程系统
感兴趣区域
真模型
设计空间
高保真
高逼真度
title Variable-fidelity optimization with design space reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable-fidelity%20optimization%20with%20design%20space%20reduction&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=Zahir,%20Mohammad%20Kashif&rft.date=2013-08-01&rft.volume=26&rft.issue=4&rft.spage=841&rft.epage=849&rft.pages=841-849&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2013.06.002&rft_dat=%3Cproquest_cross%3E1660085073%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-4ace04e0e350d0995c50ddba40b0da0da97d4ace45d6d76e27cd1e183ec1dd193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660085073&rft_id=info:pmid/&rft_cqvip_id=46934270&rfr_iscdi=true