Loading…
Optimizing sol–gel synthesis of magnesia-stabilized zirconia (MSZ) nanoparticles using Taguchi robust design for thermal barrier coatings (TBCs) applications
Nanocrystalline magnesia-stabilized zirconia powders have been synthesized using Pechini method and Taguchi experiment design. In the present research work, Taguchi method was applied to investigate the effect of citric acid to ethylene glycol mole ratio (CA/EG), citric acid to transition metal mole...
Saved in:
Published in: | Journal of sol-gel science and technology 2015-01, Vol.73 (1), p.227-241 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanocrystalline magnesia-stabilized zirconia powders have been synthesized using Pechini method and Taguchi experiment design. In the present research work, Taguchi method was applied to investigate the effect of citric acid to ethylene glycol mole ratio (CA/EG), citric acid to transition metal mole ratio (CA/TM), calcination temperature and time on particle size. CA/EG and CA/TM were determined to be the main parameters controlling particle size of magnesia-stabilized zirconia powders. Under optimum conditions, a verification experiment was carried out, and the average primary particle size of magnesia-stabilized zirconia powders was found to be 5.6 nm with homogeneous particle size distribution. Contribution percentage of each manageable factor was also determined. Furthermore, characterization of optimum sample was accomplished by means of thermogravimetric analysis, differential thermal analysis, X-ray diffraction, transmission electron microscopy, field emission scanning electron microscope and Raman spectroscopy. |
---|---|
ISSN: | 0928-0707 1573-4846 |
DOI: | 10.1007/s10971-014-3521-3 |