Loading…
Combination of temperature and saturated vapor annealing for phase separation of block copolymer
ABSTRACT Phase separation of block copolymer films is a perspective technique for the creation of nanostructured templates. The phase separation can be induced by thermal or vapor solvent annealing. However, a standardized and reproducible technique of the phase separation is still missing, even tho...
Saved in:
Published in: | Journal of applied polymer science 2015-04, Vol.132 (16), p.np-n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Phase separation of block copolymer films is a perspective technique for the creation of nanostructured templates. The phase separation can be induced by thermal or vapor solvent annealing. However, a standardized and reproducible technique of the phase separation is still missing, even though many papers describing various experimental conditions. In this article we have tried to develop standardized and reproducible technique of the phase separation, which can be easily scaled up. For this purpose we used the combination of the thermal and vapor annealing of poly(styrene‐b‐4‐vinylpyridine) copolymer films on a glass substrate under static conditions. The technique was tailored by the choice of optimal solvent for the vapor annealing, based on the solvent–polymer interaction. Finally, the films were reconstructed by immersing in methanol or ethanol and stretching of the P4VP component during the reconstruction was investigated by the angle‐resolved X‐ray photoelectron spectroscopy. Morphology of the films was investigated by the atomic force microscopy and confocal microscopy. The kinetics of the phase separation was also studied. The presented combined technique of the thermal and vapor annealing can be easily temperature‐controlled for reproducibly obtaining the films of a desired morphology. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41853. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.41853 |