Loading…

Numerical simulation of pollutant dispersion in street canyons: Geometric and thermal effects

Numerical investigations on pollutant dispersion in street canyons with emission sources located near the ground level are performed in the present work. Pollutant dispersion problems in urban areas are usually studied considering the street canyon model, which consists of long streets laterally con...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling 2014-12, Vol.38 (24), p.5883-5909
Main Authors: Madalozzo, D.M.S., Braun, A.L., Awruch, A.M., Morsch, I.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Numerical investigations on pollutant dispersion in street canyons with emission sources located near the ground level are performed in the present work. Pollutant dispersion problems in urban areas are usually studied considering the street canyon model, which consists of long streets laterally confined by buildings. Significant changes can be observed in wind flow patterns and pollutant concentration fields when thermal and geometric effects are considered. Thus, the objective of this study is to investigate numerically the wind flow and pollutant dispersion for the following cases: (a) a two-dimensional street canyon model considering three different aspect ratios and four different wall heating configurations; (b) a flow domain with two immersed buildings arranged in two distinct configurations; (c) a three-dimensional urban area model composed of a building set and street intersections. Expected flow structures were obtained inside the canyon when different aspect ratios and wall heating configurations were considered. Flow phenomena such as separation/reattachment were observed when two-buildings models were analyzed. Finally, three-dimensional flow structures, with some characteristic that are not observed in two-dimensional models, affecting the pollutant removal, were simulated in the last case, highlighting the relevance of model dimensionality. The wind flow and pollutant dispersion are investigated using a numerical model based on the finite element formulation utilized by some of the authors of this work, which is extended here to deal with problems of heat and mass transport in the urban micro-scale. Turbulence is reproduced using Large Eddy Simulation (LES) and thermal effects on the momentum equations are considered as a buoyancy force, according to Boussinesq approximation.
ISSN:0307-904X
DOI:10.1016/j.apm.2014.04.041