Loading…

LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising

•We present an edge preserving denoising technique based on wavelet transforms.•The multilevel decomposition of the noisy image is carried out.•Denoising performance is improved by aggregation. Image denoising is one of the most diversified research areas in the field of image processing and compute...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2015-02, Vol.294, p.164-181
Main Authors: Jain, Paras, Tyagi, Vipin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-b77cc7fa0406ccd7642410887b1f84e90371950a70f5d4a40d1fff940648566b3
cites cdi_FETCH-LOGICAL-c330t-b77cc7fa0406ccd7642410887b1f84e90371950a70f5d4a40d1fff940648566b3
container_end_page 181
container_issue
container_start_page 164
container_title Information sciences
container_volume 294
creator Jain, Paras
Tyagi, Vipin
description •We present an edge preserving denoising technique based on wavelet transforms.•The multilevel decomposition of the noisy image is carried out.•Denoising performance is improved by aggregation. Image denoising is one of the most diversified research areas in the field of image processing and computer vision. It is highly desirable for a denoising technique to preserve important image features, such as edges, corners and other sharp structures of an image, after denoising. Wavelet transforms show excellent proficiency in providing efficient edge-preserving image denoising, due to their capability of suppressing noisy signals from an image. This paper presents a novel edge-preserving image denoising technique based on wavelet transforms. The multi-level decomposition of the noisy image is carried out to transform the data into the wavelet domain. A locally adaptive patch-based (LAPB) thresholding scheme is used to effectively reduce noise while preserving relevant features of the original image. Experimental results on benchmark test images demonstrate that the proposed method achieves competitive denoising performance in comparison to various state-of-the-art algorithms.
doi_str_mv 10.1016/j.ins.2014.09.060
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660089659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025514009724</els_id><sourcerecordid>1660089659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-b77cc7fa0406ccd7642410887b1f84e90371950a70f5d4a40d1fff940648566b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG89emmdtGnS6mld_IKCCnoO2WSyZum2NelW9t8bWc-ehoH3eZl5CLmkkFGg_HqTuS5kOVCWQZ0BhyMyo5XIU57X9JjMAHJIIS_LU3IWwgYAmOB8Rt6axevdTdL0WrXtPlFGDaObMBnUqD_TlQpokm81YYtjYvqtcl2CZo3p4DGgn1y3TtxWrTEx2PUuxP2cnFjVBrz4m3Py8XD_vnxKm5fH5-WiSXVRwJiuhNBaWAUMuNZGcJYzClUlVtRWDGsoBK1LUAJsaZhiYKi1to5pVpWcr4o5uTr0Dr7_2mEY5dYFjW2rOux3QVLOAaqal3WM0kNU-z4Ej1YOPl7t95KC_NUnNzLqk7_6JNQy6ovM7YHB-MPk0MugHXYajfOoR2l69w_9Ay-Pd0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660089659</pqid></control><display><type>article</type><title>LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising</title><source>Elsevier</source><creator>Jain, Paras ; Tyagi, Vipin</creator><creatorcontrib>Jain, Paras ; Tyagi, Vipin</creatorcontrib><description>•We present an edge preserving denoising technique based on wavelet transforms.•The multilevel decomposition of the noisy image is carried out.•Denoising performance is improved by aggregation. Image denoising is one of the most diversified research areas in the field of image processing and computer vision. It is highly desirable for a denoising technique to preserve important image features, such as edges, corners and other sharp structures of an image, after denoising. Wavelet transforms show excellent proficiency in providing efficient edge-preserving image denoising, due to their capability of suppressing noisy signals from an image. This paper presents a novel edge-preserving image denoising technique based on wavelet transforms. The multi-level decomposition of the noisy image is carried out to transform the data into the wavelet domain. A locally adaptive patch-based (LAPB) thresholding scheme is used to effectively reduce noise while preserving relevant features of the original image. Experimental results on benchmark test images demonstrate that the proposed method achieves competitive denoising performance in comparison to various state-of-the-art algorithms.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2014.09.060</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Benchmarking ; Corners ; Edge preservation ; Image denoising ; Local adaptive thresholding ; Noise reduction ; Preserves ; Retarding ; Wavelet ; Wavelet transform ; Wavelet transforms</subject><ispartof>Information sciences, 2015-02, Vol.294, p.164-181</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-b77cc7fa0406ccd7642410887b1f84e90371950a70f5d4a40d1fff940648566b3</citedby><cites>FETCH-LOGICAL-c330t-b77cc7fa0406ccd7642410887b1f84e90371950a70f5d4a40d1fff940648566b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jain, Paras</creatorcontrib><creatorcontrib>Tyagi, Vipin</creatorcontrib><title>LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising</title><title>Information sciences</title><description>•We present an edge preserving denoising technique based on wavelet transforms.•The multilevel decomposition of the noisy image is carried out.•Denoising performance is improved by aggregation. Image denoising is one of the most diversified research areas in the field of image processing and computer vision. It is highly desirable for a denoising technique to preserve important image features, such as edges, corners and other sharp structures of an image, after denoising. Wavelet transforms show excellent proficiency in providing efficient edge-preserving image denoising, due to their capability of suppressing noisy signals from an image. This paper presents a novel edge-preserving image denoising technique based on wavelet transforms. The multi-level decomposition of the noisy image is carried out to transform the data into the wavelet domain. A locally adaptive patch-based (LAPB) thresholding scheme is used to effectively reduce noise while preserving relevant features of the original image. Experimental results on benchmark test images demonstrate that the proposed method achieves competitive denoising performance in comparison to various state-of-the-art algorithms.</description><subject>Benchmarking</subject><subject>Corners</subject><subject>Edge preservation</subject><subject>Image denoising</subject><subject>Local adaptive thresholding</subject><subject>Noise reduction</subject><subject>Preserves</subject><subject>Retarding</subject><subject>Wavelet</subject><subject>Wavelet transform</subject><subject>Wavelet transforms</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG89emmdtGnS6mld_IKCCnoO2WSyZum2NelW9t8bWc-ehoH3eZl5CLmkkFGg_HqTuS5kOVCWQZ0BhyMyo5XIU57X9JjMAHJIIS_LU3IWwgYAmOB8Rt6axevdTdL0WrXtPlFGDaObMBnUqD_TlQpokm81YYtjYvqtcl2CZo3p4DGgn1y3TtxWrTEx2PUuxP2cnFjVBrz4m3Py8XD_vnxKm5fH5-WiSXVRwJiuhNBaWAUMuNZGcJYzClUlVtRWDGsoBK1LUAJsaZhiYKi1to5pVpWcr4o5uTr0Dr7_2mEY5dYFjW2rOux3QVLOAaqal3WM0kNU-z4Ej1YOPl7t95KC_NUnNzLqk7_6JNQy6ovM7YHB-MPk0MugHXYajfOoR2l69w_9Ay-Pd0E</recordid><startdate>20150210</startdate><enddate>20150210</enddate><creator>Jain, Paras</creator><creator>Tyagi, Vipin</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150210</creationdate><title>LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising</title><author>Jain, Paras ; Tyagi, Vipin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-b77cc7fa0406ccd7642410887b1f84e90371950a70f5d4a40d1fff940648566b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benchmarking</topic><topic>Corners</topic><topic>Edge preservation</topic><topic>Image denoising</topic><topic>Local adaptive thresholding</topic><topic>Noise reduction</topic><topic>Preserves</topic><topic>Retarding</topic><topic>Wavelet</topic><topic>Wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Paras</creatorcontrib><creatorcontrib>Tyagi, Vipin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Paras</au><au>Tyagi, Vipin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising</atitle><jtitle>Information sciences</jtitle><date>2015-02-10</date><risdate>2015</risdate><volume>294</volume><spage>164</spage><epage>181</epage><pages>164-181</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>•We present an edge preserving denoising technique based on wavelet transforms.•The multilevel decomposition of the noisy image is carried out.•Denoising performance is improved by aggregation. Image denoising is one of the most diversified research areas in the field of image processing and computer vision. It is highly desirable for a denoising technique to preserve important image features, such as edges, corners and other sharp structures of an image, after denoising. Wavelet transforms show excellent proficiency in providing efficient edge-preserving image denoising, due to their capability of suppressing noisy signals from an image. This paper presents a novel edge-preserving image denoising technique based on wavelet transforms. The multi-level decomposition of the noisy image is carried out to transform the data into the wavelet domain. A locally adaptive patch-based (LAPB) thresholding scheme is used to effectively reduce noise while preserving relevant features of the original image. Experimental results on benchmark test images demonstrate that the proposed method achieves competitive denoising performance in comparison to various state-of-the-art algorithms.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2014.09.060</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2015-02, Vol.294, p.164-181
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1660089659
source Elsevier
subjects Benchmarking
Corners
Edge preservation
Image denoising
Local adaptive thresholding
Noise reduction
Preserves
Retarding
Wavelet
Wavelet transform
Wavelet transforms
title LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LAPB:%20Locally%20adaptive%20patch-based%20wavelet%20domain%20edge-preserving%20image%20denoising&rft.jtitle=Information%20sciences&rft.au=Jain,%20Paras&rft.date=2015-02-10&rft.volume=294&rft.spage=164&rft.epage=181&rft.pages=164-181&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2014.09.060&rft_dat=%3Cproquest_cross%3E1660089659%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-b77cc7fa0406ccd7642410887b1f84e90371950a70f5d4a40d1fff940648566b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660089659&rft_id=info:pmid/&rfr_iscdi=true