Loading…
Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer
We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type ob...
Saved in:
Published in: | Thin solid films 2014-11, Vol.571, p.225-229 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163 |
container_end_page | 229 |
container_issue | |
container_start_page | 225 |
container_title | Thin solid films |
container_volume | 571 |
creator | Camilo, M.E. Kassab, L.R.P. Assumpção, T.A.A. Cacho, V.D.D. Alayo, M.I. |
description | We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type obtained using conventional optical lithography procedures, followed by plasma etching and Magnetron Sputtering deposition. Optical measurements were performed to characterize the waveguides and MZI. Propagation losses around 2.0dB/cm and 2.5dB/cm were obtained at 633 and 1050nm respectively. Single-mode propagation at 633nm wavelength was observed for waveguide width up to 5μm; larger waveguide width provided multi-mode propagation. Also, preliminary characterizations of the pedestal MZI structure presented multi-mode propagation for waveguide width of 30μm.
•Waveguides were produced using a novel material, the TeO2–Bi2O3–WO3 thin films.•A non-conventional method of waveguide production was presented.•Propagation losses at 633nm presented better results than 1050nm.•Multimode behavior was observed in waveguides with width larger than 9μm.•Passive characterizations in the Mach–Zehnder structures were performed. |
doi_str_mv | 10.1016/j.tsf.2014.07.050 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660090379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609014007810</els_id><sourcerecordid>1660090379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163</originalsourceid><addsrcrecordid>eNp9kMFqGzEQhkVpoG6aB8hNl0Avux1JXskmp9bEScHgS0KOYlaaTWTWu1tp7ZCc8g59wzxJZBx6LIgRDN_80nyMnQsoBQj9Y1OOqSkliGkJpoQKPrGJmJl5IY0Sn9kEYAqFhjl8YV9T2gCAkFJN2LDEOgaHY-g7jp3n7hEjupFieDk2-4YP5CmN2PJ-GDPb8ifc08Mu5C7fpdA98Ftay7fXv_drleuvINeKj4-h401otxwTd30k3uIzxW_spME20dnHfcrulle3i5titb7-vfi5KpzSMBYeDBkDWpNH7SuqcTaTSjrwYgpOaomVQ5DKzD34Oh9ZQ2NqEER6WgutTtn3Y-4Q-z-7_H27DclR22JH_S5ZoTVkHTkgo-KIutinFKmxQwxbjM9WgD3YtRub7dqDXQvGZrt55uIjHlM20kTsXEj_BuUcKlWpA3d55Cjvug8UbXKBOkc-RHKj9X34zyvv_vmRow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660090379</pqid></control><display><type>article</type><title>Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer</title><source>ScienceDirect Journals</source><creator>Camilo, M.E. ; Kassab, L.R.P. ; Assumpção, T.A.A. ; Cacho, V.D.D. ; Alayo, M.I.</creator><creatorcontrib>Camilo, M.E. ; Kassab, L.R.P. ; Assumpção, T.A.A. ; Cacho, V.D.D. ; Alayo, M.I.</creatorcontrib><description>We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type obtained using conventional optical lithography procedures, followed by plasma etching and Magnetron Sputtering deposition. Optical measurements were performed to characterize the waveguides and MZI. Propagation losses around 2.0dB/cm and 2.5dB/cm were obtained at 633 and 1050nm respectively. Single-mode propagation at 633nm wavelength was observed for waveguide width up to 5μm; larger waveguide width provided multi-mode propagation. Also, preliminary characterizations of the pedestal MZI structure presented multi-mode propagation for waveguide width of 30μm.
•Waveguides were produced using a novel material, the TeO2–Bi2O3–WO3 thin films.•A non-conventional method of waveguide production was presented.•Propagation losses at 633nm presented better results than 1050nm.•Multimode behavior was observed in waveguides with width larger than 9μm.•Passive characterizations in the Mach–Zehnder structures were performed.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2014.07.050</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Deposition by sputtering ; Design. Technologies. Operation analysis. Testing ; Devices ; Electronics ; Etching and cleaning ; Exact sciences and technology ; Integrated circuits ; Lithography ; Mach-Zehnder interferometers ; Mach–Zehnder Interferometer ; Magnetron sputtering ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; Optical waveguide ; Optical waveguides ; Pedestal ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma etching ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thin film ; Thin films ; Wave propagation ; Waveguides ; Wavelengths</subject><ispartof>Thin solid films, 2014-11, Vol.571, p.225-229</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163</citedby><cites>FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163</cites><orcidid>0000-0002-0359-4639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29053530$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Camilo, M.E.</creatorcontrib><creatorcontrib>Kassab, L.R.P.</creatorcontrib><creatorcontrib>Assumpção, T.A.A.</creatorcontrib><creatorcontrib>Cacho, V.D.D.</creatorcontrib><creatorcontrib>Alayo, M.I.</creatorcontrib><title>Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer</title><title>Thin solid films</title><description>We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type obtained using conventional optical lithography procedures, followed by plasma etching and Magnetron Sputtering deposition. Optical measurements were performed to characterize the waveguides and MZI. Propagation losses around 2.0dB/cm and 2.5dB/cm were obtained at 633 and 1050nm respectively. Single-mode propagation at 633nm wavelength was observed for waveguide width up to 5μm; larger waveguide width provided multi-mode propagation. Also, preliminary characterizations of the pedestal MZI structure presented multi-mode propagation for waveguide width of 30μm.
•Waveguides were produced using a novel material, the TeO2–Bi2O3–WO3 thin films.•A non-conventional method of waveguide production was presented.•Propagation losses at 633nm presented better results than 1050nm.•Multimode behavior was observed in waveguides with width larger than 9μm.•Passive characterizations in the Mach–Zehnder structures were performed.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Deposition by sputtering</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electronics</subject><subject>Etching and cleaning</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Lithography</subject><subject>Mach-Zehnder interferometers</subject><subject>Mach–Zehnder Interferometer</subject><subject>Magnetron sputtering</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Optical waveguide</subject><subject>Optical waveguides</subject><subject>Pedestal</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma etching</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thin film</subject><subject>Thin films</subject><subject>Wave propagation</subject><subject>Waveguides</subject><subject>Wavelengths</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEQhkVpoG6aB8hNl0Avux1JXskmp9bEScHgS0KOYlaaTWTWu1tp7ZCc8g59wzxJZBx6LIgRDN_80nyMnQsoBQj9Y1OOqSkliGkJpoQKPrGJmJl5IY0Sn9kEYAqFhjl8YV9T2gCAkFJN2LDEOgaHY-g7jp3n7hEjupFieDk2-4YP5CmN2PJ-GDPb8ifc08Mu5C7fpdA98Ftay7fXv_drleuvINeKj4-h401otxwTd30k3uIzxW_spME20dnHfcrulle3i5titb7-vfi5KpzSMBYeDBkDWpNH7SuqcTaTSjrwYgpOaomVQ5DKzD34Oh9ZQ2NqEER6WgutTtn3Y-4Q-z-7_H27DclR22JH_S5ZoTVkHTkgo-KIutinFKmxQwxbjM9WgD3YtRub7dqDXQvGZrt55uIjHlM20kTsXEj_BuUcKlWpA3d55Cjvug8UbXKBOkc-RHKj9X34zyvv_vmRow</recordid><startdate>20141128</startdate><enddate>20141128</enddate><creator>Camilo, M.E.</creator><creator>Kassab, L.R.P.</creator><creator>Assumpção, T.A.A.</creator><creator>Cacho, V.D.D.</creator><creator>Alayo, M.I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0359-4639</orcidid></search><sort><creationdate>20141128</creationdate><title>Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer</title><author>Camilo, M.E. ; Kassab, L.R.P. ; Assumpção, T.A.A. ; Cacho, V.D.D. ; Alayo, M.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Deposition by sputtering</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electronics</topic><topic>Etching and cleaning</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Lithography</topic><topic>Mach-Zehnder interferometers</topic><topic>Mach–Zehnder Interferometer</topic><topic>Magnetron sputtering</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Optical waveguide</topic><topic>Optical waveguides</topic><topic>Pedestal</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma etching</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thin film</topic><topic>Thin films</topic><topic>Wave propagation</topic><topic>Waveguides</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camilo, M.E.</creatorcontrib><creatorcontrib>Kassab, L.R.P.</creatorcontrib><creatorcontrib>Assumpção, T.A.A.</creatorcontrib><creatorcontrib>Cacho, V.D.D.</creatorcontrib><creatorcontrib>Alayo, M.I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camilo, M.E.</au><au>Kassab, L.R.P.</au><au>Assumpção, T.A.A.</au><au>Cacho, V.D.D.</au><au>Alayo, M.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer</atitle><jtitle>Thin solid films</jtitle><date>2014-11-28</date><risdate>2014</risdate><volume>571</volume><spage>225</spage><epage>229</epage><pages>225-229</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type obtained using conventional optical lithography procedures, followed by plasma etching and Magnetron Sputtering deposition. Optical measurements were performed to characterize the waveguides and MZI. Propagation losses around 2.0dB/cm and 2.5dB/cm were obtained at 633 and 1050nm respectively. Single-mode propagation at 633nm wavelength was observed for waveguide width up to 5μm; larger waveguide width provided multi-mode propagation. Also, preliminary characterizations of the pedestal MZI structure presented multi-mode propagation for waveguide width of 30μm.
•Waveguides were produced using a novel material, the TeO2–Bi2O3–WO3 thin films.•A non-conventional method of waveguide production was presented.•Propagation losses at 633nm presented better results than 1050nm.•Multimode behavior was observed in waveguides with width larger than 9μm.•Passive characterizations in the Mach–Zehnder structures were performed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2014.07.050</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0359-4639</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2014-11, Vol.571, p.225-229 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660090379 |
source | ScienceDirect Journals |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology Deposition Deposition by sputtering Design. Technologies. Operation analysis. Testing Devices Electronics Etching and cleaning Exact sciences and technology Integrated circuits Lithography Mach-Zehnder interferometers Mach–Zehnder Interferometer Magnetron sputtering Materials science Methods of deposition of films and coatings film growth and epitaxy Microelectronic fabrication (materials and surfaces technology) Optical waveguide Optical waveguides Pedestal Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma applications Plasma etching Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Thin film Thin films Wave propagation Waveguides Wavelengths |
title | Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20pedestal%20optical%20waveguides%20using%20TeO2%E2%80%93WO3%E2%80%93Bi2O3%20thin%20film%20as%20core%20layer&rft.jtitle=Thin%20solid%20films&rft.au=Camilo,%20M.E.&rft.date=2014-11-28&rft.volume=571&rft.spage=225&rft.epage=229&rft.pages=225-229&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2014.07.050&rft_dat=%3Cproquest_cross%3E1660090379%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660090379&rft_id=info:pmid/&rfr_iscdi=true |