Loading…

Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer

We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type ob...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2014-11, Vol.571, p.225-229
Main Authors: Camilo, M.E., Kassab, L.R.P., Assumpção, T.A.A., Cacho, V.D.D., Alayo, M.I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163
cites cdi_FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163
container_end_page 229
container_issue
container_start_page 225
container_title Thin solid films
container_volume 571
creator Camilo, M.E.
Kassab, L.R.P.
Assumpção, T.A.A.
Cacho, V.D.D.
Alayo, M.I.
description We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type obtained using conventional optical lithography procedures, followed by plasma etching and Magnetron Sputtering deposition. Optical measurements were performed to characterize the waveguides and MZI. Propagation losses around 2.0dB/cm and 2.5dB/cm were obtained at 633 and 1050nm respectively. Single-mode propagation at 633nm wavelength was observed for waveguide width up to 5μm; larger waveguide width provided multi-mode propagation. Also, preliminary characterizations of the pedestal MZI structure presented multi-mode propagation for waveguide width of 30μm. •Waveguides were produced using a novel material, the TeO2–Bi2O3–WO3 thin films.•A non-conventional method of waveguide production was presented.•Propagation losses at 633nm presented better results than 1050nm.•Multimode behavior was observed in waveguides with width larger than 9μm.•Passive characterizations in the Mach–Zehnder structures were performed.
doi_str_mv 10.1016/j.tsf.2014.07.050
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660090379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609014007810</els_id><sourcerecordid>1660090379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163</originalsourceid><addsrcrecordid>eNp9kMFqGzEQhkVpoG6aB8hNl0Avux1JXskmp9bEScHgS0KOYlaaTWTWu1tp7ZCc8g59wzxJZBx6LIgRDN_80nyMnQsoBQj9Y1OOqSkliGkJpoQKPrGJmJl5IY0Sn9kEYAqFhjl8YV9T2gCAkFJN2LDEOgaHY-g7jp3n7hEjupFieDk2-4YP5CmN2PJ-GDPb8ifc08Mu5C7fpdA98Ftay7fXv_drleuvINeKj4-h401otxwTd30k3uIzxW_spME20dnHfcrulle3i5titb7-vfi5KpzSMBYeDBkDWpNH7SuqcTaTSjrwYgpOaomVQ5DKzD34Oh9ZQ2NqEER6WgutTtn3Y-4Q-z-7_H27DclR22JH_S5ZoTVkHTkgo-KIutinFKmxQwxbjM9WgD3YtRub7dqDXQvGZrt55uIjHlM20kTsXEj_BuUcKlWpA3d55Cjvug8UbXKBOkc-RHKj9X34zyvv_vmRow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660090379</pqid></control><display><type>article</type><title>Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer</title><source>ScienceDirect Journals</source><creator>Camilo, M.E. ; Kassab, L.R.P. ; Assumpção, T.A.A. ; Cacho, V.D.D. ; Alayo, M.I.</creator><creatorcontrib>Camilo, M.E. ; Kassab, L.R.P. ; Assumpção, T.A.A. ; Cacho, V.D.D. ; Alayo, M.I.</creatorcontrib><description>We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type obtained using conventional optical lithography procedures, followed by plasma etching and Magnetron Sputtering deposition. Optical measurements were performed to characterize the waveguides and MZI. Propagation losses around 2.0dB/cm and 2.5dB/cm were obtained at 633 and 1050nm respectively. Single-mode propagation at 633nm wavelength was observed for waveguide width up to 5μm; larger waveguide width provided multi-mode propagation. Also, preliminary characterizations of the pedestal MZI structure presented multi-mode propagation for waveguide width of 30μm. •Waveguides were produced using a novel material, the TeO2–Bi2O3–WO3 thin films.•A non-conventional method of waveguide production was presented.•Propagation losses at 633nm presented better results than 1050nm.•Multimode behavior was observed in waveguides with width larger than 9μm.•Passive characterizations in the Mach–Zehnder structures were performed.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2014.07.050</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Deposition by sputtering ; Design. Technologies. Operation analysis. Testing ; Devices ; Electronics ; Etching and cleaning ; Exact sciences and technology ; Integrated circuits ; Lithography ; Mach-Zehnder interferometers ; Mach–Zehnder Interferometer ; Magnetron sputtering ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; Optical waveguide ; Optical waveguides ; Pedestal ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma etching ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thin film ; Thin films ; Wave propagation ; Waveguides ; Wavelengths</subject><ispartof>Thin solid films, 2014-11, Vol.571, p.225-229</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163</citedby><cites>FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163</cites><orcidid>0000-0002-0359-4639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29053530$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Camilo, M.E.</creatorcontrib><creatorcontrib>Kassab, L.R.P.</creatorcontrib><creatorcontrib>Assumpção, T.A.A.</creatorcontrib><creatorcontrib>Cacho, V.D.D.</creatorcontrib><creatorcontrib>Alayo, M.I.</creatorcontrib><title>Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer</title><title>Thin solid films</title><description>We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type obtained using conventional optical lithography procedures, followed by plasma etching and Magnetron Sputtering deposition. Optical measurements were performed to characterize the waveguides and MZI. Propagation losses around 2.0dB/cm and 2.5dB/cm were obtained at 633 and 1050nm respectively. Single-mode propagation at 633nm wavelength was observed for waveguide width up to 5μm; larger waveguide width provided multi-mode propagation. Also, preliminary characterizations of the pedestal MZI structure presented multi-mode propagation for waveguide width of 30μm. •Waveguides were produced using a novel material, the TeO2–Bi2O3–WO3 thin films.•A non-conventional method of waveguide production was presented.•Propagation losses at 633nm presented better results than 1050nm.•Multimode behavior was observed in waveguides with width larger than 9μm.•Passive characterizations in the Mach–Zehnder structures were performed.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Deposition by sputtering</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electronics</subject><subject>Etching and cleaning</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Lithography</subject><subject>Mach-Zehnder interferometers</subject><subject>Mach–Zehnder Interferometer</subject><subject>Magnetron sputtering</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Optical waveguide</subject><subject>Optical waveguides</subject><subject>Pedestal</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma etching</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thin film</subject><subject>Thin films</subject><subject>Wave propagation</subject><subject>Waveguides</subject><subject>Wavelengths</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEQhkVpoG6aB8hNl0Avux1JXskmp9bEScHgS0KOYlaaTWTWu1tp7ZCc8g59wzxJZBx6LIgRDN_80nyMnQsoBQj9Y1OOqSkliGkJpoQKPrGJmJl5IY0Sn9kEYAqFhjl8YV9T2gCAkFJN2LDEOgaHY-g7jp3n7hEjupFieDk2-4YP5CmN2PJ-GDPb8ifc08Mu5C7fpdA98Ftay7fXv_drleuvINeKj4-h401otxwTd30k3uIzxW_spME20dnHfcrulle3i5titb7-vfi5KpzSMBYeDBkDWpNH7SuqcTaTSjrwYgpOaomVQ5DKzD34Oh9ZQ2NqEER6WgutTtn3Y-4Q-z-7_H27DclR22JH_S5ZoTVkHTkgo-KIutinFKmxQwxbjM9WgD3YtRub7dqDXQvGZrt55uIjHlM20kTsXEj_BuUcKlWpA3d55Cjvug8UbXKBOkc-RHKj9X34zyvv_vmRow</recordid><startdate>20141128</startdate><enddate>20141128</enddate><creator>Camilo, M.E.</creator><creator>Kassab, L.R.P.</creator><creator>Assumpção, T.A.A.</creator><creator>Cacho, V.D.D.</creator><creator>Alayo, M.I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0359-4639</orcidid></search><sort><creationdate>20141128</creationdate><title>Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer</title><author>Camilo, M.E. ; Kassab, L.R.P. ; Assumpção, T.A.A. ; Cacho, V.D.D. ; Alayo, M.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Deposition by sputtering</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electronics</topic><topic>Etching and cleaning</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Lithography</topic><topic>Mach-Zehnder interferometers</topic><topic>Mach–Zehnder Interferometer</topic><topic>Magnetron sputtering</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Optical waveguide</topic><topic>Optical waveguides</topic><topic>Pedestal</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma etching</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thin film</topic><topic>Thin films</topic><topic>Wave propagation</topic><topic>Waveguides</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camilo, M.E.</creatorcontrib><creatorcontrib>Kassab, L.R.P.</creatorcontrib><creatorcontrib>Assumpção, T.A.A.</creatorcontrib><creatorcontrib>Cacho, V.D.D.</creatorcontrib><creatorcontrib>Alayo, M.I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camilo, M.E.</au><au>Kassab, L.R.P.</au><au>Assumpção, T.A.A.</au><au>Cacho, V.D.D.</au><au>Alayo, M.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer</atitle><jtitle>Thin solid films</jtitle><date>2014-11-28</date><risdate>2014</risdate><volume>571</volume><spage>225</spage><epage>229</epage><pages>225-229</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>We present the production and characterization of pedestal type optical waveguides with TeO2–WO3–Bi2O3 thin films to be used as core layer for applications in optical devices such as the Mach–Zehnder Interferometer (MZI). The optical waveguides and MZI structure were fabricated from pedestal type obtained using conventional optical lithography procedures, followed by plasma etching and Magnetron Sputtering deposition. Optical measurements were performed to characterize the waveguides and MZI. Propagation losses around 2.0dB/cm and 2.5dB/cm were obtained at 633 and 1050nm respectively. Single-mode propagation at 633nm wavelength was observed for waveguide width up to 5μm; larger waveguide width provided multi-mode propagation. Also, preliminary characterizations of the pedestal MZI structure presented multi-mode propagation for waveguide width of 30μm. •Waveguides were produced using a novel material, the TeO2–Bi2O3–WO3 thin films.•A non-conventional method of waveguide production was presented.•Propagation losses at 633nm presented better results than 1050nm.•Multimode behavior was observed in waveguides with width larger than 9μm.•Passive characterizations in the Mach–Zehnder structures were performed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2014.07.050</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0359-4639</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2014-11, Vol.571, p.225-229
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1660090379
source ScienceDirect Journals
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Deposition
Deposition by sputtering
Design. Technologies. Operation analysis. Testing
Devices
Electronics
Etching and cleaning
Exact sciences and technology
Integrated circuits
Lithography
Mach-Zehnder interferometers
Mach–Zehnder Interferometer
Magnetron sputtering
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Microelectronic fabrication (materials and surfaces technology)
Optical waveguide
Optical waveguides
Pedestal
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma applications
Plasma etching
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Thin film
Thin films
Wave propagation
Waveguides
Wavelengths
title Fabrication and characterization of pedestal optical waveguides using TeO2–WO3–Bi2O3 thin film as core layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20pedestal%20optical%20waveguides%20using%20TeO2%E2%80%93WO3%E2%80%93Bi2O3%20thin%20film%20as%20core%20layer&rft.jtitle=Thin%20solid%20films&rft.au=Camilo,%20M.E.&rft.date=2014-11-28&rft.volume=571&rft.spage=225&rft.epage=229&rft.pages=225-229&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2014.07.050&rft_dat=%3Cproquest_cross%3E1660090379%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-d07e77066eda6d5eba88232c0d140c262a5ca02379d0db0db2b0f7b01ee64b163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660090379&rft_id=info:pmid/&rfr_iscdi=true