Loading…
Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment
[Display omitted] Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan...
Saved in:
Published in: | European journal of pharmaceutics and biopharmaceutics 2014-11, Vol.88 (3), p.746-758 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413 |
---|---|
cites | cdi_FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413 |
container_end_page | 758 |
container_issue | 3 |
container_start_page | 746 |
container_title | European journal of pharmaceutics and biopharmaceutics |
container_volume | 88 |
creator | Chirio, Daniela Gallarate, Marina Peira, Elena Battaglia, Luigi Muntoni, Elisabetta Riganti, Chiara Biasibetti, Elena Capucchio, Maria Teresa Valazza, Alberto Panciani, Pierpaolo Lanotte, Michele Annovazzi, Laura Caldera, Valentina Mellai, Marta Filice, Gaetano Corona, Silvia Schiffer, Davide |
description | [Display omitted]
Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8–20mV range and encapsulation efficiency in the 25–90% range.
Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24h.
Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN.
Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells. |
doi_str_mv | 10.1016/j.ejpb.2014.10.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660397506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0939641114003166</els_id><sourcerecordid>1660397506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413</originalsourceid><addsrcrecordid>eNqNkUtLLDEQhYNc0fHxB1xcsrybHpPOo7vBjYgvEHSh65BJqscM6U7fJCPOvzfDqEtxUwXFd07BOQidUTKnhMrz1RxW02JeE8rLYU5os4dmtG1YxTinf9CMdKyrJKf0EB2ltCKE8Ea0B-iwFpwLRvgMLZ9Cctm9QWVedVyCxSl4Z7F3U5mjHsOkY3bGQ8I64Ukb77J-B49tXC-xBV-0cYPTJmUYsBvx0ruw8DrlMGicI-g8wJhP0H6vfYLTz32MXm6un6_uqofH2_ury4fKMN42le7BtB2pqTVcS0k73YpONFawztRsUdctFZ0xIDnvWS-ptBxITVjfENY2nLJj9G_nO8Xwfw0pq8ElA97rEcI6KSolYV0jiPwFykV5KAUraL1DTQwpRejVFN2g40ZRorZdqJXadqG2XWxvpYsi-vvpv14MYL8lX-EX4GIHQAnkzUFUyTgYDVgXwWRlg_vJ_wOBEJrl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645228653</pqid></control><display><type>article</type><title>Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment</title><source>ScienceDirect Freedom Collection</source><creator>Chirio, Daniela ; Gallarate, Marina ; Peira, Elena ; Battaglia, Luigi ; Muntoni, Elisabetta ; Riganti, Chiara ; Biasibetti, Elena ; Capucchio, Maria Teresa ; Valazza, Alberto ; Panciani, Pierpaolo ; Lanotte, Michele ; Annovazzi, Laura ; Caldera, Valentina ; Mellai, Marta ; Filice, Gaetano ; Corona, Silvia ; Schiffer, Davide</creator><creatorcontrib>Chirio, Daniela ; Gallarate, Marina ; Peira, Elena ; Battaglia, Luigi ; Muntoni, Elisabetta ; Riganti, Chiara ; Biasibetti, Elena ; Capucchio, Maria Teresa ; Valazza, Alberto ; Panciani, Pierpaolo ; Lanotte, Michele ; Annovazzi, Laura ; Caldera, Valentina ; Mellai, Marta ; Filice, Gaetano ; Corona, Silvia ; Schiffer, Davide</creatorcontrib><description>[Display omitted]
Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8–20mV range and encapsulation efficiency in the 25–90% range.
Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24h.
Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN.
Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells.</description><identifier>ISSN: 0939-6411</identifier><identifier>EISSN: 1873-3441</identifier><identifier>DOI: 10.1016/j.ejpb.2014.10.017</identifier><identifier>PMID: 25445304</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Antineoplastic Agents, Phytogenic - administration & dosage ; Antineoplastic Agents, Phytogenic - pharmacokinetics ; Antineoplastic Agents, Phytogenic - therapeutic use ; BBB permeability ; Blood-Brain Barrier - cytology ; Blood-Brain Barrier - drug effects ; Blood-Brain Barrier - metabolism ; Brain Neoplasms - drug therapy ; Brain Neoplasms - pathology ; Cell Line, Tumor ; Cell Membrane Permeability ; Cell Survival - drug effects ; Coacervation ; Cytotoxicity ; Dose-Response Relationship, Drug ; Drug Carriers - chemistry ; Drug Delivery Systems ; Drug Liberation ; Drug Stability ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - pathology ; Humans ; Lipids - chemistry ; Nanoparticles - chemistry ; Paclitaxel ; Paclitaxel - administration & dosage ; Paclitaxel - pharmacokinetics ; Paclitaxel - therapeutic use ; Particle Size ; SLN ; Surface Properties</subject><ispartof>European journal of pharmaceutics and biopharmaceutics, 2014-11, Vol.88 (3), p.746-758</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413</citedby><cites>FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25445304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chirio, Daniela</creatorcontrib><creatorcontrib>Gallarate, Marina</creatorcontrib><creatorcontrib>Peira, Elena</creatorcontrib><creatorcontrib>Battaglia, Luigi</creatorcontrib><creatorcontrib>Muntoni, Elisabetta</creatorcontrib><creatorcontrib>Riganti, Chiara</creatorcontrib><creatorcontrib>Biasibetti, Elena</creatorcontrib><creatorcontrib>Capucchio, Maria Teresa</creatorcontrib><creatorcontrib>Valazza, Alberto</creatorcontrib><creatorcontrib>Panciani, Pierpaolo</creatorcontrib><creatorcontrib>Lanotte, Michele</creatorcontrib><creatorcontrib>Annovazzi, Laura</creatorcontrib><creatorcontrib>Caldera, Valentina</creatorcontrib><creatorcontrib>Mellai, Marta</creatorcontrib><creatorcontrib>Filice, Gaetano</creatorcontrib><creatorcontrib>Corona, Silvia</creatorcontrib><creatorcontrib>Schiffer, Davide</creatorcontrib><title>Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment</title><title>European journal of pharmaceutics and biopharmaceutics</title><addtitle>Eur J Pharm Biopharm</addtitle><description>[Display omitted]
Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8–20mV range and encapsulation efficiency in the 25–90% range.
Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24h.
Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN.
Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells.</description><subject>Antineoplastic Agents, Phytogenic - administration & dosage</subject><subject>Antineoplastic Agents, Phytogenic - pharmacokinetics</subject><subject>Antineoplastic Agents, Phytogenic - therapeutic use</subject><subject>BBB permeability</subject><subject>Blood-Brain Barrier - cytology</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane Permeability</subject><subject>Cell Survival - drug effects</subject><subject>Coacervation</subject><subject>Cytotoxicity</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Delivery Systems</subject><subject>Drug Liberation</subject><subject>Drug Stability</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>Lipids - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Paclitaxel</subject><subject>Paclitaxel - administration & dosage</subject><subject>Paclitaxel - pharmacokinetics</subject><subject>Paclitaxel - therapeutic use</subject><subject>Particle Size</subject><subject>SLN</subject><subject>Surface Properties</subject><issn>0939-6411</issn><issn>1873-3441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLLDEQhYNc0fHxB1xcsrybHpPOo7vBjYgvEHSh65BJqscM6U7fJCPOvzfDqEtxUwXFd07BOQidUTKnhMrz1RxW02JeE8rLYU5os4dmtG1YxTinf9CMdKyrJKf0EB2ltCKE8Ea0B-iwFpwLRvgMLZ9Cctm9QWVedVyCxSl4Z7F3U5mjHsOkY3bGQ8I64Ukb77J-B49tXC-xBV-0cYPTJmUYsBvx0ruw8DrlMGicI-g8wJhP0H6vfYLTz32MXm6un6_uqofH2_ury4fKMN42le7BtB2pqTVcS0k73YpONFawztRsUdctFZ0xIDnvWS-ptBxITVjfENY2nLJj9G_nO8Xwfw0pq8ElA97rEcI6KSolYV0jiPwFykV5KAUraL1DTQwpRejVFN2g40ZRorZdqJXadqG2XWxvpYsi-vvpv14MYL8lX-EX4GIHQAnkzUFUyTgYDVgXwWRlg_vJ_wOBEJrl</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Chirio, Daniela</creator><creator>Gallarate, Marina</creator><creator>Peira, Elena</creator><creator>Battaglia, Luigi</creator><creator>Muntoni, Elisabetta</creator><creator>Riganti, Chiara</creator><creator>Biasibetti, Elena</creator><creator>Capucchio, Maria Teresa</creator><creator>Valazza, Alberto</creator><creator>Panciani, Pierpaolo</creator><creator>Lanotte, Michele</creator><creator>Annovazzi, Laura</creator><creator>Caldera, Valentina</creator><creator>Mellai, Marta</creator><creator>Filice, Gaetano</creator><creator>Corona, Silvia</creator><creator>Schiffer, Davide</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201411</creationdate><title>Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment</title><author>Chirio, Daniela ; Gallarate, Marina ; Peira, Elena ; Battaglia, Luigi ; Muntoni, Elisabetta ; Riganti, Chiara ; Biasibetti, Elena ; Capucchio, Maria Teresa ; Valazza, Alberto ; Panciani, Pierpaolo ; Lanotte, Michele ; Annovazzi, Laura ; Caldera, Valentina ; Mellai, Marta ; Filice, Gaetano ; Corona, Silvia ; Schiffer, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antineoplastic Agents, Phytogenic - administration & dosage</topic><topic>Antineoplastic Agents, Phytogenic - pharmacokinetics</topic><topic>Antineoplastic Agents, Phytogenic - therapeutic use</topic><topic>BBB permeability</topic><topic>Blood-Brain Barrier - cytology</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane Permeability</topic><topic>Cell Survival - drug effects</topic><topic>Coacervation</topic><topic>Cytotoxicity</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Delivery Systems</topic><topic>Drug Liberation</topic><topic>Drug Stability</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>Lipids - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Paclitaxel</topic><topic>Paclitaxel - administration & dosage</topic><topic>Paclitaxel - pharmacokinetics</topic><topic>Paclitaxel - therapeutic use</topic><topic>Particle Size</topic><topic>SLN</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chirio, Daniela</creatorcontrib><creatorcontrib>Gallarate, Marina</creatorcontrib><creatorcontrib>Peira, Elena</creatorcontrib><creatorcontrib>Battaglia, Luigi</creatorcontrib><creatorcontrib>Muntoni, Elisabetta</creatorcontrib><creatorcontrib>Riganti, Chiara</creatorcontrib><creatorcontrib>Biasibetti, Elena</creatorcontrib><creatorcontrib>Capucchio, Maria Teresa</creatorcontrib><creatorcontrib>Valazza, Alberto</creatorcontrib><creatorcontrib>Panciani, Pierpaolo</creatorcontrib><creatorcontrib>Lanotte, Michele</creatorcontrib><creatorcontrib>Annovazzi, Laura</creatorcontrib><creatorcontrib>Caldera, Valentina</creatorcontrib><creatorcontrib>Mellai, Marta</creatorcontrib><creatorcontrib>Filice, Gaetano</creatorcontrib><creatorcontrib>Corona, Silvia</creatorcontrib><creatorcontrib>Schiffer, Davide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>European journal of pharmaceutics and biopharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chirio, Daniela</au><au>Gallarate, Marina</au><au>Peira, Elena</au><au>Battaglia, Luigi</au><au>Muntoni, Elisabetta</au><au>Riganti, Chiara</au><au>Biasibetti, Elena</au><au>Capucchio, Maria Teresa</au><au>Valazza, Alberto</au><au>Panciani, Pierpaolo</au><au>Lanotte, Michele</au><au>Annovazzi, Laura</au><au>Caldera, Valentina</au><au>Mellai, Marta</au><au>Filice, Gaetano</au><au>Corona, Silvia</au><au>Schiffer, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment</atitle><jtitle>European journal of pharmaceutics and biopharmaceutics</jtitle><addtitle>Eur J Pharm Biopharm</addtitle><date>2014-11</date><risdate>2014</risdate><volume>88</volume><issue>3</issue><spage>746</spage><epage>758</epage><pages>746-758</pages><issn>0939-6411</issn><eissn>1873-3441</eissn><abstract>[Display omitted]
Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8–20mV range and encapsulation efficiency in the 25–90% range.
Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24h.
Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN.
Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25445304</pmid><doi>10.1016/j.ejpb.2014.10.017</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-6411 |
ispartof | European journal of pharmaceutics and biopharmaceutics, 2014-11, Vol.88 (3), p.746-758 |
issn | 0939-6411 1873-3441 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660397506 |
source | ScienceDirect Freedom Collection |
subjects | Antineoplastic Agents, Phytogenic - administration & dosage Antineoplastic Agents, Phytogenic - pharmacokinetics Antineoplastic Agents, Phytogenic - therapeutic use BBB permeability Blood-Brain Barrier - cytology Blood-Brain Barrier - drug effects Blood-Brain Barrier - metabolism Brain Neoplasms - drug therapy Brain Neoplasms - pathology Cell Line, Tumor Cell Membrane Permeability Cell Survival - drug effects Coacervation Cytotoxicity Dose-Response Relationship, Drug Drug Carriers - chemistry Drug Delivery Systems Drug Liberation Drug Stability Glioblastoma Glioblastoma - drug therapy Glioblastoma - pathology Humans Lipids - chemistry Nanoparticles - chemistry Paclitaxel Paclitaxel - administration & dosage Paclitaxel - pharmacokinetics Paclitaxel - therapeutic use Particle Size SLN Surface Properties |
title | Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive-charged%20solid%20lipid%20nanoparticles%20as%20paclitaxel%20drug%20delivery%20system%20in%20glioblastoma%20treatment&rft.jtitle=European%20journal%20of%20pharmaceutics%20and%20biopharmaceutics&rft.au=Chirio,%20Daniela&rft.date=2014-11&rft.volume=88&rft.issue=3&rft.spage=746&rft.epage=758&rft.pages=746-758&rft.issn=0939-6411&rft.eissn=1873-3441&rft_id=info:doi/10.1016/j.ejpb.2014.10.017&rft_dat=%3Cproquest_cross%3E1660397506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1645228653&rft_id=info:pmid/25445304&rfr_iscdi=true |