Loading…

Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment

[Display omitted] Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutics and biopharmaceutics 2014-11, Vol.88 (3), p.746-758
Main Authors: Chirio, Daniela, Gallarate, Marina, Peira, Elena, Battaglia, Luigi, Muntoni, Elisabetta, Riganti, Chiara, Biasibetti, Elena, Capucchio, Maria Teresa, Valazza, Alberto, Panciani, Pierpaolo, Lanotte, Michele, Annovazzi, Laura, Caldera, Valentina, Mellai, Marta, Filice, Gaetano, Corona, Silvia, Schiffer, Davide
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413
cites cdi_FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413
container_end_page 758
container_issue 3
container_start_page 746
container_title European journal of pharmaceutics and biopharmaceutics
container_volume 88
creator Chirio, Daniela
Gallarate, Marina
Peira, Elena
Battaglia, Luigi
Muntoni, Elisabetta
Riganti, Chiara
Biasibetti, Elena
Capucchio, Maria Teresa
Valazza, Alberto
Panciani, Pierpaolo
Lanotte, Michele
Annovazzi, Laura
Caldera, Valentina
Mellai, Marta
Filice, Gaetano
Corona, Silvia
Schiffer, Davide
description [Display omitted] Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8–20mV range and encapsulation efficiency in the 25–90% range. Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24h. Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN. Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells.
doi_str_mv 10.1016/j.ejpb.2014.10.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660397506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0939641114003166</els_id><sourcerecordid>1660397506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413</originalsourceid><addsrcrecordid>eNqNkUtLLDEQhYNc0fHxB1xcsrybHpPOo7vBjYgvEHSh65BJqscM6U7fJCPOvzfDqEtxUwXFd07BOQidUTKnhMrz1RxW02JeE8rLYU5os4dmtG1YxTinf9CMdKyrJKf0EB2ltCKE8Ea0B-iwFpwLRvgMLZ9Cctm9QWVedVyCxSl4Z7F3U5mjHsOkY3bGQ8I64Ukb77J-B49tXC-xBV-0cYPTJmUYsBvx0ruw8DrlMGicI-g8wJhP0H6vfYLTz32MXm6un6_uqofH2_ury4fKMN42le7BtB2pqTVcS0k73YpONFawztRsUdctFZ0xIDnvWS-ptBxITVjfENY2nLJj9G_nO8Xwfw0pq8ElA97rEcI6KSolYV0jiPwFykV5KAUraL1DTQwpRejVFN2g40ZRorZdqJXadqG2XWxvpYsi-vvpv14MYL8lX-EX4GIHQAnkzUFUyTgYDVgXwWRlg_vJ_wOBEJrl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645228653</pqid></control><display><type>article</type><title>Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment</title><source>ScienceDirect Freedom Collection</source><creator>Chirio, Daniela ; Gallarate, Marina ; Peira, Elena ; Battaglia, Luigi ; Muntoni, Elisabetta ; Riganti, Chiara ; Biasibetti, Elena ; Capucchio, Maria Teresa ; Valazza, Alberto ; Panciani, Pierpaolo ; Lanotte, Michele ; Annovazzi, Laura ; Caldera, Valentina ; Mellai, Marta ; Filice, Gaetano ; Corona, Silvia ; Schiffer, Davide</creator><creatorcontrib>Chirio, Daniela ; Gallarate, Marina ; Peira, Elena ; Battaglia, Luigi ; Muntoni, Elisabetta ; Riganti, Chiara ; Biasibetti, Elena ; Capucchio, Maria Teresa ; Valazza, Alberto ; Panciani, Pierpaolo ; Lanotte, Michele ; Annovazzi, Laura ; Caldera, Valentina ; Mellai, Marta ; Filice, Gaetano ; Corona, Silvia ; Schiffer, Davide</creatorcontrib><description>[Display omitted] Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8–20mV range and encapsulation efficiency in the 25–90% range. Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24h. Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN. Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells.</description><identifier>ISSN: 0939-6411</identifier><identifier>EISSN: 1873-3441</identifier><identifier>DOI: 10.1016/j.ejpb.2014.10.017</identifier><identifier>PMID: 25445304</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Antineoplastic Agents, Phytogenic - administration &amp; dosage ; Antineoplastic Agents, Phytogenic - pharmacokinetics ; Antineoplastic Agents, Phytogenic - therapeutic use ; BBB permeability ; Blood-Brain Barrier - cytology ; Blood-Brain Barrier - drug effects ; Blood-Brain Barrier - metabolism ; Brain Neoplasms - drug therapy ; Brain Neoplasms - pathology ; Cell Line, Tumor ; Cell Membrane Permeability ; Cell Survival - drug effects ; Coacervation ; Cytotoxicity ; Dose-Response Relationship, Drug ; Drug Carriers - chemistry ; Drug Delivery Systems ; Drug Liberation ; Drug Stability ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - pathology ; Humans ; Lipids - chemistry ; Nanoparticles - chemistry ; Paclitaxel ; Paclitaxel - administration &amp; dosage ; Paclitaxel - pharmacokinetics ; Paclitaxel - therapeutic use ; Particle Size ; SLN ; Surface Properties</subject><ispartof>European journal of pharmaceutics and biopharmaceutics, 2014-11, Vol.88 (3), p.746-758</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413</citedby><cites>FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25445304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chirio, Daniela</creatorcontrib><creatorcontrib>Gallarate, Marina</creatorcontrib><creatorcontrib>Peira, Elena</creatorcontrib><creatorcontrib>Battaglia, Luigi</creatorcontrib><creatorcontrib>Muntoni, Elisabetta</creatorcontrib><creatorcontrib>Riganti, Chiara</creatorcontrib><creatorcontrib>Biasibetti, Elena</creatorcontrib><creatorcontrib>Capucchio, Maria Teresa</creatorcontrib><creatorcontrib>Valazza, Alberto</creatorcontrib><creatorcontrib>Panciani, Pierpaolo</creatorcontrib><creatorcontrib>Lanotte, Michele</creatorcontrib><creatorcontrib>Annovazzi, Laura</creatorcontrib><creatorcontrib>Caldera, Valentina</creatorcontrib><creatorcontrib>Mellai, Marta</creatorcontrib><creatorcontrib>Filice, Gaetano</creatorcontrib><creatorcontrib>Corona, Silvia</creatorcontrib><creatorcontrib>Schiffer, Davide</creatorcontrib><title>Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment</title><title>European journal of pharmaceutics and biopharmaceutics</title><addtitle>Eur J Pharm Biopharm</addtitle><description>[Display omitted] Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8–20mV range and encapsulation efficiency in the 25–90% range. Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24h. Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN. Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells.</description><subject>Antineoplastic Agents, Phytogenic - administration &amp; dosage</subject><subject>Antineoplastic Agents, Phytogenic - pharmacokinetics</subject><subject>Antineoplastic Agents, Phytogenic - therapeutic use</subject><subject>BBB permeability</subject><subject>Blood-Brain Barrier - cytology</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane Permeability</subject><subject>Cell Survival - drug effects</subject><subject>Coacervation</subject><subject>Cytotoxicity</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Delivery Systems</subject><subject>Drug Liberation</subject><subject>Drug Stability</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>Lipids - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Paclitaxel</subject><subject>Paclitaxel - administration &amp; dosage</subject><subject>Paclitaxel - pharmacokinetics</subject><subject>Paclitaxel - therapeutic use</subject><subject>Particle Size</subject><subject>SLN</subject><subject>Surface Properties</subject><issn>0939-6411</issn><issn>1873-3441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLLDEQhYNc0fHxB1xcsrybHpPOo7vBjYgvEHSh65BJqscM6U7fJCPOvzfDqEtxUwXFd07BOQidUTKnhMrz1RxW02JeE8rLYU5os4dmtG1YxTinf9CMdKyrJKf0EB2ltCKE8Ea0B-iwFpwLRvgMLZ9Cctm9QWVedVyCxSl4Z7F3U5mjHsOkY3bGQ8I64Ukb77J-B49tXC-xBV-0cYPTJmUYsBvx0ruw8DrlMGicI-g8wJhP0H6vfYLTz32MXm6un6_uqofH2_ury4fKMN42le7BtB2pqTVcS0k73YpONFawztRsUdctFZ0xIDnvWS-ptBxITVjfENY2nLJj9G_nO8Xwfw0pq8ElA97rEcI6KSolYV0jiPwFykV5KAUraL1DTQwpRejVFN2g40ZRorZdqJXadqG2XWxvpYsi-vvpv14MYL8lX-EX4GIHQAnkzUFUyTgYDVgXwWRlg_vJ_wOBEJrl</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Chirio, Daniela</creator><creator>Gallarate, Marina</creator><creator>Peira, Elena</creator><creator>Battaglia, Luigi</creator><creator>Muntoni, Elisabetta</creator><creator>Riganti, Chiara</creator><creator>Biasibetti, Elena</creator><creator>Capucchio, Maria Teresa</creator><creator>Valazza, Alberto</creator><creator>Panciani, Pierpaolo</creator><creator>Lanotte, Michele</creator><creator>Annovazzi, Laura</creator><creator>Caldera, Valentina</creator><creator>Mellai, Marta</creator><creator>Filice, Gaetano</creator><creator>Corona, Silvia</creator><creator>Schiffer, Davide</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201411</creationdate><title>Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment</title><author>Chirio, Daniela ; Gallarate, Marina ; Peira, Elena ; Battaglia, Luigi ; Muntoni, Elisabetta ; Riganti, Chiara ; Biasibetti, Elena ; Capucchio, Maria Teresa ; Valazza, Alberto ; Panciani, Pierpaolo ; Lanotte, Michele ; Annovazzi, Laura ; Caldera, Valentina ; Mellai, Marta ; Filice, Gaetano ; Corona, Silvia ; Schiffer, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antineoplastic Agents, Phytogenic - administration &amp; dosage</topic><topic>Antineoplastic Agents, Phytogenic - pharmacokinetics</topic><topic>Antineoplastic Agents, Phytogenic - therapeutic use</topic><topic>BBB permeability</topic><topic>Blood-Brain Barrier - cytology</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane Permeability</topic><topic>Cell Survival - drug effects</topic><topic>Coacervation</topic><topic>Cytotoxicity</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Delivery Systems</topic><topic>Drug Liberation</topic><topic>Drug Stability</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>Lipids - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Paclitaxel</topic><topic>Paclitaxel - administration &amp; dosage</topic><topic>Paclitaxel - pharmacokinetics</topic><topic>Paclitaxel - therapeutic use</topic><topic>Particle Size</topic><topic>SLN</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chirio, Daniela</creatorcontrib><creatorcontrib>Gallarate, Marina</creatorcontrib><creatorcontrib>Peira, Elena</creatorcontrib><creatorcontrib>Battaglia, Luigi</creatorcontrib><creatorcontrib>Muntoni, Elisabetta</creatorcontrib><creatorcontrib>Riganti, Chiara</creatorcontrib><creatorcontrib>Biasibetti, Elena</creatorcontrib><creatorcontrib>Capucchio, Maria Teresa</creatorcontrib><creatorcontrib>Valazza, Alberto</creatorcontrib><creatorcontrib>Panciani, Pierpaolo</creatorcontrib><creatorcontrib>Lanotte, Michele</creatorcontrib><creatorcontrib>Annovazzi, Laura</creatorcontrib><creatorcontrib>Caldera, Valentina</creatorcontrib><creatorcontrib>Mellai, Marta</creatorcontrib><creatorcontrib>Filice, Gaetano</creatorcontrib><creatorcontrib>Corona, Silvia</creatorcontrib><creatorcontrib>Schiffer, Davide</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>European journal of pharmaceutics and biopharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chirio, Daniela</au><au>Gallarate, Marina</au><au>Peira, Elena</au><au>Battaglia, Luigi</au><au>Muntoni, Elisabetta</au><au>Riganti, Chiara</au><au>Biasibetti, Elena</au><au>Capucchio, Maria Teresa</au><au>Valazza, Alberto</au><au>Panciani, Pierpaolo</au><au>Lanotte, Michele</au><au>Annovazzi, Laura</au><au>Caldera, Valentina</au><au>Mellai, Marta</au><au>Filice, Gaetano</au><au>Corona, Silvia</au><au>Schiffer, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment</atitle><jtitle>European journal of pharmaceutics and biopharmaceutics</jtitle><addtitle>Eur J Pharm Biopharm</addtitle><date>2014-11</date><risdate>2014</risdate><volume>88</volume><issue>3</issue><spage>746</spage><epage>758</epage><pages>746-758</pages><issn>0939-6411</issn><eissn>1873-3441</eissn><abstract>[Display omitted] Paclitaxel loaded solid lipid nanoparticles (SLN) of behenic acid were prepared with the coacervation technique. Generally, spherical shaped SLN with mean diameters in the range 300–600nm were obtained. The introduction of charged molecules, such as stearylamine and glycol chitosan into the formulation allowed to obtain positive SLN with Zeta potential in the 8–20mV range and encapsulation efficiency in the 25–90% range. Blood–brain barrier (BBB) permeability, tested in vitro through hCMEC/D3 cells monolayer, showed a significantly increase in the permeation of Coumarin-6, used as model drug, when vehicled in SLN. Positive-charged SLN do not seem to enhance permeation although stearylamine-positive SLN resulted the best permeable formulation after 24h. Cytotoxicity studies on NO3 glioblastoma cell line demonstrated the maintenance of cytotoxic activity of all paclitaxel-loaded SLN that was always unmodified or greater compared with free drug. No difference in cytotoxicity was noted between neutral and charged SLN. Co-culture experiments with hCMEC/D3 and different glioblastoma cells evidenced that, when delivered in SLN, paclitaxel increased its cytotoxicity towards glioblastoma cells.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25445304</pmid><doi>10.1016/j.ejpb.2014.10.017</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0939-6411
ispartof European journal of pharmaceutics and biopharmaceutics, 2014-11, Vol.88 (3), p.746-758
issn 0939-6411
1873-3441
language eng
recordid cdi_proquest_miscellaneous_1660397506
source ScienceDirect Freedom Collection
subjects Antineoplastic Agents, Phytogenic - administration & dosage
Antineoplastic Agents, Phytogenic - pharmacokinetics
Antineoplastic Agents, Phytogenic - therapeutic use
BBB permeability
Blood-Brain Barrier - cytology
Blood-Brain Barrier - drug effects
Blood-Brain Barrier - metabolism
Brain Neoplasms - drug therapy
Brain Neoplasms - pathology
Cell Line, Tumor
Cell Membrane Permeability
Cell Survival - drug effects
Coacervation
Cytotoxicity
Dose-Response Relationship, Drug
Drug Carriers - chemistry
Drug Delivery Systems
Drug Liberation
Drug Stability
Glioblastoma
Glioblastoma - drug therapy
Glioblastoma - pathology
Humans
Lipids - chemistry
Nanoparticles - chemistry
Paclitaxel
Paclitaxel - administration & dosage
Paclitaxel - pharmacokinetics
Paclitaxel - therapeutic use
Particle Size
SLN
Surface Properties
title Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive-charged%20solid%20lipid%20nanoparticles%20as%20paclitaxel%20drug%20delivery%20system%20in%20glioblastoma%20treatment&rft.jtitle=European%20journal%20of%20pharmaceutics%20and%20biopharmaceutics&rft.au=Chirio,%20Daniela&rft.date=2014-11&rft.volume=88&rft.issue=3&rft.spage=746&rft.epage=758&rft.pages=746-758&rft.issn=0939-6411&rft.eissn=1873-3441&rft_id=info:doi/10.1016/j.ejpb.2014.10.017&rft_dat=%3Cproquest_cross%3E1660397506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3487-afec89021dc4a6619a85957d539c23b228159cce644f3f616d4e0203f70387413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1645228653&rft_id=info:pmid/25445304&rfr_iscdi=true