Loading…
PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease
Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its cli...
Saved in:
Published in: | Molecular neurobiology 2015-02, Vol.51 (1), p.32-42 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33 |
container_end_page | 42 |
container_issue | 1 |
container_start_page | 32 |
container_title | Molecular neurobiology |
container_volume | 51 |
creator | Zhu, Guanghui Chen, Ganping Shi, Lu Feng, Jenny Wang, Yan Ye, Chaohui Feng, Wenke Niu, Jianlou Huang, Zhifeng |
description | Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood–brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders. |
doi_str_mv | 10.1007/s12035-014-8750-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660401845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660401845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokPhAdggS2zYGO71T-xZomlnqDRAhWBtOYlTUhK72EmlYcVr8Ho8CR6lIITEypK_48_XPoQ8RXiJAPpVRg5CMUDJjFbA1D2yQqXWDNHw-2QFZi2YrqQ5IY9yvgbgHEE_JCdcrgWAMSvy7fJ8dxjc5FuaPm93W8bpJoZbf8h0H8MVm3wa6Ts_p3iT4uSbqY-ButDSi7Fs3Pq8hMENdDuHJe4LQT-4ib6NrR9o7OilS1_6kGP4-f1Hpmd99i77x-RB54bsn9ytp-TT9vzj5g3bv99dbF7vWSO1mliF3FTQ6hpavq6NkQaQK-FRtVI2ugJeCWk6pwU3rcSufIADDjXvRI2yEeKUvFh6y8BfZ58nO_a58cPggo9ztlhVIAGNVAV9_g96HedUHnekpDEVIteFwoVqUsw5-c7epH506WAR7FGMXcTYIsYexdhj87O75rkeffvnxG8TBeALkEsUrnz66-r_tv4CYmiXNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648861127</pqid></control><display><type>article</type><title>PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease</title><source>Springer Link</source><creator>Zhu, Guanghui ; Chen, Ganping ; Shi, Lu ; Feng, Jenny ; Wang, Yan ; Ye, Chaohui ; Feng, Wenke ; Niu, Jianlou ; Huang, Zhifeng</creator><creatorcontrib>Zhu, Guanghui ; Chen, Ganping ; Shi, Lu ; Feng, Jenny ; Wang, Yan ; Ye, Chaohui ; Feng, Wenke ; Niu, Jianlou ; Huang, Zhifeng</creatorcontrib><description>Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood–brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-014-8750-5</identifier><identifier>PMID: 24930088</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>3,4-Dihydroxyphenylacetic Acid - metabolism ; Animals ; Apomorphine - pharmacology ; Apoptosis - drug effects ; Astrocytes - drug effects ; Astrocytes - metabolism ; Behavior, Animal - drug effects ; Biological Availability ; Biomedical and Life Sciences ; Biomedicine ; Blood-brain barrier ; Cell Biology ; Cell Survival - drug effects ; Disease Models, Animal ; Dopaminergic Neurons - drug effects ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Fibroblast Growth Factor 2 - pharmacokinetics ; Fibroblast Growth Factor 2 - therapeutic use ; Glial Fibrillary Acidic Protein - metabolism ; Male ; Neostriatum - drug effects ; Neostriatum - metabolism ; Neostriatum - pathology ; Neurobiology ; Neurology ; Neurons ; Neuroprotective Agents - pharmacokinetics ; Neuroprotective Agents - pharmacology ; Neuroprotective Agents - therapeutic use ; Neurosciences ; Oxidopamine ; Parkinson Disease - drug therapy ; Parkinson Disease - pathology ; Parkinson Disease - physiopathology ; Parkinson's disease ; PC12 Cells ; Polyethylene Glycols - pharmacokinetics ; Polyethylene Glycols - therapeutic use ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins - pharmacokinetics ; Recombinant Proteins - therapeutic use ; Substantia Nigra - drug effects ; Substantia Nigra - metabolism ; Substantia Nigra - pathology ; Tyrosine 3-Monooxygenase - metabolism</subject><ispartof>Molecular neurobiology, 2015-02, Vol.51 (1), p.32-42</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33</citedby><cites>FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24930088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Guanghui</creatorcontrib><creatorcontrib>Chen, Ganping</creatorcontrib><creatorcontrib>Shi, Lu</creatorcontrib><creatorcontrib>Feng, Jenny</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ye, Chaohui</creatorcontrib><creatorcontrib>Feng, Wenke</creatorcontrib><creatorcontrib>Niu, Jianlou</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><title>PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood–brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.</description><subject>3,4-Dihydroxyphenylacetic Acid - metabolism</subject><subject>Animals</subject><subject>Apomorphine - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Astrocytes - drug effects</subject><subject>Astrocytes - metabolism</subject><subject>Behavior, Animal - drug effects</subject><subject>Biological Availability</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood-brain barrier</subject><subject>Cell Biology</subject><subject>Cell Survival - drug effects</subject><subject>Disease Models, Animal</subject><subject>Dopaminergic Neurons - drug effects</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Fibroblast Growth Factor 2 - pharmacokinetics</subject><subject>Fibroblast Growth Factor 2 - therapeutic use</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Male</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - metabolism</subject><subject>Neostriatum - pathology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroprotective Agents - pharmacokinetics</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Neurosciences</subject><subject>Oxidopamine</subject><subject>Parkinson Disease - drug therapy</subject><subject>Parkinson Disease - pathology</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>PC12 Cells</subject><subject>Polyethylene Glycols - pharmacokinetics</subject><subject>Polyethylene Glycols - therapeutic use</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant Proteins - pharmacokinetics</subject><subject>Recombinant Proteins - therapeutic use</subject><subject>Substantia Nigra - drug effects</subject><subject>Substantia Nigra - metabolism</subject><subject>Substantia Nigra - pathology</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAURi0EokPhAdggS2zYGO71T-xZomlnqDRAhWBtOYlTUhK72EmlYcVr8Ho8CR6lIITEypK_48_XPoQ8RXiJAPpVRg5CMUDJjFbA1D2yQqXWDNHw-2QFZi2YrqQ5IY9yvgbgHEE_JCdcrgWAMSvy7fJ8dxjc5FuaPm93W8bpJoZbf8h0H8MVm3wa6Ts_p3iT4uSbqY-ButDSi7Fs3Pq8hMENdDuHJe4LQT-4ib6NrR9o7OilS1_6kGP4-f1Hpmd99i77x-RB54bsn9ytp-TT9vzj5g3bv99dbF7vWSO1mliF3FTQ6hpavq6NkQaQK-FRtVI2ugJeCWk6pwU3rcSufIADDjXvRI2yEeKUvFh6y8BfZ58nO_a58cPggo9ztlhVIAGNVAV9_g96HedUHnekpDEVIteFwoVqUsw5-c7epH506WAR7FGMXcTYIsYexdhj87O75rkeffvnxG8TBeALkEsUrnz66-r_tv4CYmiXNg</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Zhu, Guanghui</creator><creator>Chen, Ganping</creator><creator>Shi, Lu</creator><creator>Feng, Jenny</creator><creator>Wang, Yan</creator><creator>Ye, Chaohui</creator><creator>Feng, Wenke</creator><creator>Niu, Jianlou</creator><creator>Huang, Zhifeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20150201</creationdate><title>PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease</title><author>Zhu, Guanghui ; Chen, Ganping ; Shi, Lu ; Feng, Jenny ; Wang, Yan ; Ye, Chaohui ; Feng, Wenke ; Niu, Jianlou ; Huang, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>3,4-Dihydroxyphenylacetic Acid - metabolism</topic><topic>Animals</topic><topic>Apomorphine - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Astrocytes - drug effects</topic><topic>Astrocytes - metabolism</topic><topic>Behavior, Animal - drug effects</topic><topic>Biological Availability</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood-brain barrier</topic><topic>Cell Biology</topic><topic>Cell Survival - drug effects</topic><topic>Disease Models, Animal</topic><topic>Dopaminergic Neurons - drug effects</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Fibroblast Growth Factor 2 - pharmacokinetics</topic><topic>Fibroblast Growth Factor 2 - therapeutic use</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Male</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - metabolism</topic><topic>Neostriatum - pathology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroprotective Agents - pharmacokinetics</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Neurosciences</topic><topic>Oxidopamine</topic><topic>Parkinson Disease - drug therapy</topic><topic>Parkinson Disease - pathology</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>PC12 Cells</topic><topic>Polyethylene Glycols - pharmacokinetics</topic><topic>Polyethylene Glycols - therapeutic use</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant Proteins - pharmacokinetics</topic><topic>Recombinant Proteins - therapeutic use</topic><topic>Substantia Nigra - drug effects</topic><topic>Substantia Nigra - metabolism</topic><topic>Substantia Nigra - pathology</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Guanghui</creatorcontrib><creatorcontrib>Chen, Ganping</creatorcontrib><creatorcontrib>Shi, Lu</creatorcontrib><creatorcontrib>Feng, Jenny</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ye, Chaohui</creatorcontrib><creatorcontrib>Feng, Wenke</creatorcontrib><creatorcontrib>Niu, Jianlou</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Guanghui</au><au>Chen, Ganping</au><au>Shi, Lu</au><au>Feng, Jenny</au><au>Wang, Yan</au><au>Ye, Chaohui</au><au>Feng, Wenke</au><au>Niu, Jianlou</au><au>Huang, Zhifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>32</spage><epage>42</epage><pages>32-42</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood–brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24930088</pmid><doi>10.1007/s12035-014-8750-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2015-02, Vol.51 (1), p.32-42 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660401845 |
source | Springer Link |
subjects | 3,4-Dihydroxyphenylacetic Acid - metabolism Animals Apomorphine - pharmacology Apoptosis - drug effects Astrocytes - drug effects Astrocytes - metabolism Behavior, Animal - drug effects Biological Availability Biomedical and Life Sciences Biomedicine Blood-brain barrier Cell Biology Cell Survival - drug effects Disease Models, Animal Dopaminergic Neurons - drug effects Dopaminergic Neurons - metabolism Dopaminergic Neurons - pathology Fibroblast Growth Factor 2 - pharmacokinetics Fibroblast Growth Factor 2 - therapeutic use Glial Fibrillary Acidic Protein - metabolism Male Neostriatum - drug effects Neostriatum - metabolism Neostriatum - pathology Neurobiology Neurology Neurons Neuroprotective Agents - pharmacokinetics Neuroprotective Agents - pharmacology Neuroprotective Agents - therapeutic use Neurosciences Oxidopamine Parkinson Disease - drug therapy Parkinson Disease - pathology Parkinson Disease - physiopathology Parkinson's disease PC12 Cells Polyethylene Glycols - pharmacokinetics Polyethylene Glycols - therapeutic use Rats Rats, Sprague-Dawley Recombinant Proteins - pharmacokinetics Recombinant Proteins - therapeutic use Substantia Nigra - drug effects Substantia Nigra - metabolism Substantia Nigra - pathology Tyrosine 3-Monooxygenase - metabolism |
title | PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEGylated%20rhFGF-2%20Conveys%20Long-term%20Neuroprotection%20and%20Improves%20Neuronal%20Function%20in%20a%20Rat%20Model%20of%20Parkinson%E2%80%99s%20Disease&rft.jtitle=Molecular%20neurobiology&rft.au=Zhu,%20Guanghui&rft.date=2015-02-01&rft.volume=51&rft.issue=1&rft.spage=32&rft.epage=42&rft.pages=32-42&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-014-8750-5&rft_dat=%3Cproquest_cross%3E1660401845%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1648861127&rft_id=info:pmid/24930088&rfr_iscdi=true |