Loading…

PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease

Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its cli...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurobiology 2015-02, Vol.51 (1), p.32-42
Main Authors: Zhu, Guanghui, Chen, Ganping, Shi, Lu, Feng, Jenny, Wang, Yan, Ye, Chaohui, Feng, Wenke, Niu, Jianlou, Huang, Zhifeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33
cites cdi_FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33
container_end_page 42
container_issue 1
container_start_page 32
container_title Molecular neurobiology
container_volume 51
creator Zhu, Guanghui
Chen, Ganping
Shi, Lu
Feng, Jenny
Wang, Yan
Ye, Chaohui
Feng, Wenke
Niu, Jianlou
Huang, Zhifeng
description Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood–brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.
doi_str_mv 10.1007/s12035-014-8750-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660401845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660401845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokPhAdggS2zYGO71T-xZomlnqDRAhWBtOYlTUhK72EmlYcVr8Ho8CR6lIITEypK_48_XPoQ8RXiJAPpVRg5CMUDJjFbA1D2yQqXWDNHw-2QFZi2YrqQ5IY9yvgbgHEE_JCdcrgWAMSvy7fJ8dxjc5FuaPm93W8bpJoZbf8h0H8MVm3wa6Ts_p3iT4uSbqY-ButDSi7Fs3Pq8hMENdDuHJe4LQT-4ib6NrR9o7OilS1_6kGP4-f1Hpmd99i77x-RB54bsn9ytp-TT9vzj5g3bv99dbF7vWSO1mliF3FTQ6hpavq6NkQaQK-FRtVI2ugJeCWk6pwU3rcSufIADDjXvRI2yEeKUvFh6y8BfZ58nO_a58cPggo9ztlhVIAGNVAV9_g96HedUHnekpDEVIteFwoVqUsw5-c7epH506WAR7FGMXcTYIsYexdhj87O75rkeffvnxG8TBeALkEsUrnz66-r_tv4CYmiXNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648861127</pqid></control><display><type>article</type><title>PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease</title><source>Springer Link</source><creator>Zhu, Guanghui ; Chen, Ganping ; Shi, Lu ; Feng, Jenny ; Wang, Yan ; Ye, Chaohui ; Feng, Wenke ; Niu, Jianlou ; Huang, Zhifeng</creator><creatorcontrib>Zhu, Guanghui ; Chen, Ganping ; Shi, Lu ; Feng, Jenny ; Wang, Yan ; Ye, Chaohui ; Feng, Wenke ; Niu, Jianlou ; Huang, Zhifeng</creatorcontrib><description>Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood–brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-014-8750-5</identifier><identifier>PMID: 24930088</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>3,4-Dihydroxyphenylacetic Acid - metabolism ; Animals ; Apomorphine - pharmacology ; Apoptosis - drug effects ; Astrocytes - drug effects ; Astrocytes - metabolism ; Behavior, Animal - drug effects ; Biological Availability ; Biomedical and Life Sciences ; Biomedicine ; Blood-brain barrier ; Cell Biology ; Cell Survival - drug effects ; Disease Models, Animal ; Dopaminergic Neurons - drug effects ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Fibroblast Growth Factor 2 - pharmacokinetics ; Fibroblast Growth Factor 2 - therapeutic use ; Glial Fibrillary Acidic Protein - metabolism ; Male ; Neostriatum - drug effects ; Neostriatum - metabolism ; Neostriatum - pathology ; Neurobiology ; Neurology ; Neurons ; Neuroprotective Agents - pharmacokinetics ; Neuroprotective Agents - pharmacology ; Neuroprotective Agents - therapeutic use ; Neurosciences ; Oxidopamine ; Parkinson Disease - drug therapy ; Parkinson Disease - pathology ; Parkinson Disease - physiopathology ; Parkinson's disease ; PC12 Cells ; Polyethylene Glycols - pharmacokinetics ; Polyethylene Glycols - therapeutic use ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins - pharmacokinetics ; Recombinant Proteins - therapeutic use ; Substantia Nigra - drug effects ; Substantia Nigra - metabolism ; Substantia Nigra - pathology ; Tyrosine 3-Monooxygenase - metabolism</subject><ispartof>Molecular neurobiology, 2015-02, Vol.51 (1), p.32-42</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33</citedby><cites>FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24930088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Guanghui</creatorcontrib><creatorcontrib>Chen, Ganping</creatorcontrib><creatorcontrib>Shi, Lu</creatorcontrib><creatorcontrib>Feng, Jenny</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ye, Chaohui</creatorcontrib><creatorcontrib>Feng, Wenke</creatorcontrib><creatorcontrib>Niu, Jianlou</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><title>PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood–brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.</description><subject>3,4-Dihydroxyphenylacetic Acid - metabolism</subject><subject>Animals</subject><subject>Apomorphine - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Astrocytes - drug effects</subject><subject>Astrocytes - metabolism</subject><subject>Behavior, Animal - drug effects</subject><subject>Biological Availability</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood-brain barrier</subject><subject>Cell Biology</subject><subject>Cell Survival - drug effects</subject><subject>Disease Models, Animal</subject><subject>Dopaminergic Neurons - drug effects</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Fibroblast Growth Factor 2 - pharmacokinetics</subject><subject>Fibroblast Growth Factor 2 - therapeutic use</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Male</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - metabolism</subject><subject>Neostriatum - pathology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroprotective Agents - pharmacokinetics</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Neurosciences</subject><subject>Oxidopamine</subject><subject>Parkinson Disease - drug therapy</subject><subject>Parkinson Disease - pathology</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>PC12 Cells</subject><subject>Polyethylene Glycols - pharmacokinetics</subject><subject>Polyethylene Glycols - therapeutic use</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant Proteins - pharmacokinetics</subject><subject>Recombinant Proteins - therapeutic use</subject><subject>Substantia Nigra - drug effects</subject><subject>Substantia Nigra - metabolism</subject><subject>Substantia Nigra - pathology</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAURi0EokPhAdggS2zYGO71T-xZomlnqDRAhWBtOYlTUhK72EmlYcVr8Ho8CR6lIITEypK_48_XPoQ8RXiJAPpVRg5CMUDJjFbA1D2yQqXWDNHw-2QFZi2YrqQ5IY9yvgbgHEE_JCdcrgWAMSvy7fJ8dxjc5FuaPm93W8bpJoZbf8h0H8MVm3wa6Ts_p3iT4uSbqY-ButDSi7Fs3Pq8hMENdDuHJe4LQT-4ib6NrR9o7OilS1_6kGP4-f1Hpmd99i77x-RB54bsn9ytp-TT9vzj5g3bv99dbF7vWSO1mliF3FTQ6hpavq6NkQaQK-FRtVI2ugJeCWk6pwU3rcSufIADDjXvRI2yEeKUvFh6y8BfZ58nO_a58cPggo9ztlhVIAGNVAV9_g96HedUHnekpDEVIteFwoVqUsw5-c7epH506WAR7FGMXcTYIsYexdhj87O75rkeffvnxG8TBeALkEsUrnz66-r_tv4CYmiXNg</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Zhu, Guanghui</creator><creator>Chen, Ganping</creator><creator>Shi, Lu</creator><creator>Feng, Jenny</creator><creator>Wang, Yan</creator><creator>Ye, Chaohui</creator><creator>Feng, Wenke</creator><creator>Niu, Jianlou</creator><creator>Huang, Zhifeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20150201</creationdate><title>PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease</title><author>Zhu, Guanghui ; Chen, Ganping ; Shi, Lu ; Feng, Jenny ; Wang, Yan ; Ye, Chaohui ; Feng, Wenke ; Niu, Jianlou ; Huang, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>3,4-Dihydroxyphenylacetic Acid - metabolism</topic><topic>Animals</topic><topic>Apomorphine - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Astrocytes - drug effects</topic><topic>Astrocytes - metabolism</topic><topic>Behavior, Animal - drug effects</topic><topic>Biological Availability</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood-brain barrier</topic><topic>Cell Biology</topic><topic>Cell Survival - drug effects</topic><topic>Disease Models, Animal</topic><topic>Dopaminergic Neurons - drug effects</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Fibroblast Growth Factor 2 - pharmacokinetics</topic><topic>Fibroblast Growth Factor 2 - therapeutic use</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Male</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - metabolism</topic><topic>Neostriatum - pathology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroprotective Agents - pharmacokinetics</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Neurosciences</topic><topic>Oxidopamine</topic><topic>Parkinson Disease - drug therapy</topic><topic>Parkinson Disease - pathology</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>PC12 Cells</topic><topic>Polyethylene Glycols - pharmacokinetics</topic><topic>Polyethylene Glycols - therapeutic use</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant Proteins - pharmacokinetics</topic><topic>Recombinant Proteins - therapeutic use</topic><topic>Substantia Nigra - drug effects</topic><topic>Substantia Nigra - metabolism</topic><topic>Substantia Nigra - pathology</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Guanghui</creatorcontrib><creatorcontrib>Chen, Ganping</creatorcontrib><creatorcontrib>Shi, Lu</creatorcontrib><creatorcontrib>Feng, Jenny</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Ye, Chaohui</creatorcontrib><creatorcontrib>Feng, Wenke</creatorcontrib><creatorcontrib>Niu, Jianlou</creatorcontrib><creatorcontrib>Huang, Zhifeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Guanghui</au><au>Chen, Ganping</au><au>Shi, Lu</au><au>Feng, Jenny</au><au>Wang, Yan</au><au>Ye, Chaohui</au><au>Feng, Wenke</au><au>Niu, Jianlou</au><au>Huang, Zhifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>32</spage><epage>42</epage><pages>32-42</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood–brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24930088</pmid><doi>10.1007/s12035-014-8750-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2015-02, Vol.51 (1), p.32-42
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_1660401845
source Springer Link
subjects 3,4-Dihydroxyphenylacetic Acid - metabolism
Animals
Apomorphine - pharmacology
Apoptosis - drug effects
Astrocytes - drug effects
Astrocytes - metabolism
Behavior, Animal - drug effects
Biological Availability
Biomedical and Life Sciences
Biomedicine
Blood-brain barrier
Cell Biology
Cell Survival - drug effects
Disease Models, Animal
Dopaminergic Neurons - drug effects
Dopaminergic Neurons - metabolism
Dopaminergic Neurons - pathology
Fibroblast Growth Factor 2 - pharmacokinetics
Fibroblast Growth Factor 2 - therapeutic use
Glial Fibrillary Acidic Protein - metabolism
Male
Neostriatum - drug effects
Neostriatum - metabolism
Neostriatum - pathology
Neurobiology
Neurology
Neurons
Neuroprotective Agents - pharmacokinetics
Neuroprotective Agents - pharmacology
Neuroprotective Agents - therapeutic use
Neurosciences
Oxidopamine
Parkinson Disease - drug therapy
Parkinson Disease - pathology
Parkinson Disease - physiopathology
Parkinson's disease
PC12 Cells
Polyethylene Glycols - pharmacokinetics
Polyethylene Glycols - therapeutic use
Rats
Rats, Sprague-Dawley
Recombinant Proteins - pharmacokinetics
Recombinant Proteins - therapeutic use
Substantia Nigra - drug effects
Substantia Nigra - metabolism
Substantia Nigra - pathology
Tyrosine 3-Monooxygenase - metabolism
title PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEGylated%20rhFGF-2%20Conveys%20Long-term%20Neuroprotection%20and%20Improves%20Neuronal%20Function%20in%20a%20Rat%20Model%20of%20Parkinson%E2%80%99s%20Disease&rft.jtitle=Molecular%20neurobiology&rft.au=Zhu,%20Guanghui&rft.date=2015-02-01&rft.volume=51&rft.issue=1&rft.spage=32&rft.epage=42&rft.pages=32-42&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-014-8750-5&rft_dat=%3Cproquest_cross%3E1660401845%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-612860d7b0d29b884801253e15d44c76026348fa7328d41f155a020b2f3b14c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1648861127&rft_id=info:pmid/24930088&rfr_iscdi=true