Loading…

Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches

Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology Biochemical, systemic, and environmental physiology, 2013-07, Vol.183 (5), p.675-683
Main Authors: Beamonte-Barrientos, Rene, Verhulst, Simon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is therefore often assumed that oxidative stress is proportional to energy consumption. In mammals, an increased metabolic rate induced by cold exposure generally increases oxidative stress. However, compared to mammals, birds generate fewer free radicals per ATP produced and hence it is not obvious that, in birds, a cold-induced increase of metabolic rate increase oxidative stress. We tested whether cold-induced increase in metabolic rate increased oxidative stress in zebra finches by exposing individuals to cold and warm overnight temperatures. We registered metabolic rate and plasma levels of non-enzymatic antioxidants and reactive oxygen metabolites (ROMs), a measure of oxidative damage. Metabolic rate was on average 88 % higher in cold compared to warm temperature, with females being stronger affected than males. However, temperature had no effect on plasma antioxidants or our measure of oxidative damage. Middle-age birds had higher levels of plasma antioxidants than younger and older birds, but age was unrelated to ROMs. Birds showed repeatability of plasma ROMs across temperatures but not of non-enzymatic antioxidants. In contrast to similar studies in mammals, our results do not show evidence of increased oxidative stress in plasma after an acute cold-induced increase of metabolic rate but research in more bird species is needed to assess the generality of this pattern.
ISSN:0174-1578
1432-136X
DOI:10.1007/s00360-013-0745-4