Loading…

Molecular basis for substrate recognition by lysine methyltransferases and demethylases

Lysine methylation has emerged as a prominent covalent modification in histones and non-histone proteins. This modification has been implicated in numerous genomic processes, including heterochromatinization, cell cycle progression, DNA damage response, DNA replication, genome stability, and epigene...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2014-12, Vol.1839 (12), p.1404-1415
Main Authors: Del Rizzo, Paul A., Trievel, Raymond C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c531t-a270b77d7c386464f8a3b48a435f4258c6efecd82d20c11910e57bcecd1496043
cites cdi_FETCH-LOGICAL-c531t-a270b77d7c386464f8a3b48a435f4258c6efecd82d20c11910e57bcecd1496043
container_end_page 1415
container_issue 12
container_start_page 1404
container_title Biochimica et biophysica acta
container_volume 1839
creator Del Rizzo, Paul A.
Trievel, Raymond C.
description Lysine methylation has emerged as a prominent covalent modification in histones and non-histone proteins. This modification has been implicated in numerous genomic processes, including heterochromatinization, cell cycle progression, DNA damage response, DNA replication, genome stability, and epigenetic gene regulation that underpins developmental programs defining cell identity and fate. The site and degree of lysine methylation is dynamically modulated through the enzymatic activities of protein lysine methyltransferases (KMTs) and protein lysine demethylases (KDMs). These enzymes display distinct substrate specificities that in part define their biological functions. This review explores recent progress in elucidating the molecular basis of these specificities, highlighting structural and functional studies of the methyltransferases SUV4-20H1 (KMT5B), SUV4-20H2 (KMT5C), and ATXR5, and the demethylases UTX (KDM6A), JMJD3 (KDM6B), and JMJD2D (KDM4D). We conclude by examining these findings in the context of related KMTs and KDMs and by exploring unresolved questions regarding the specificities and functions of these enzymes. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. •The active site structure of SUV4-20 KMTs enables selective H4K20me1 methylation.•ATXR5 monomethylates K27 through specific recognition of A31 in histone H3.1.•UTX and JMJD3 demethylate H3K27me3 through conserved specificity determinants.•Sequence variations in JMJD2 KDMs govern differential recognition of H3K36me3.
doi_str_mv 10.1016/j.bbagrm.2014.06.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660406174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1874939914001606</els_id><sourcerecordid>1660406174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-a270b77d7c386464f8a3b48a435f4258c6efecd82d20c11910e57bcecd1496043</originalsourceid><addsrcrecordid>eNqNkE1r3jAMgM1YWbtu_2AMH3dJKjuOnVwKo-wLWnpp6dHYjtL5JR-tlRTefz-_S9vj2ElCeiShh7FPAkoBQp_tSu_dfRpLCUKVoEuA5g07EY3RhaokvP2bq6Kt2vaYvSfaAWghAd6xY6lapVvTnLC7q3nAsA4uce8oEu_nxGn1tCS3IE8Y5vspLnGeuN_zYU9xQj7i8ns_ZGKiHpMjJO6mjne4NQ6FD-yodwPhx-d4ym6_f7u5-FlcXv_4dfH1sgh1JZbCSQPemM6EqtFKq75xlVeNU1XdK1k3QWOPoWtkJyEI0QrA2viQS0K1GlR1yr5sex_S_LgiLXaMFHAY3ITzSlboTOW_zf-gtVQVGNNmVG1oSDNRwt4-pDi6tLcC7MG-3dnNvj3Yt6Bttp_HPj9fWP2I3evQi-4MnG8AZiVPEZOlEHEK2MVserHdHP994Q_Elpic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652430779</pqid></control><display><type>article</type><title>Molecular basis for substrate recognition by lysine methyltransferases and demethylases</title><source>ScienceDirect Freedom Collection</source><creator>Del Rizzo, Paul A. ; Trievel, Raymond C.</creator><creatorcontrib>Del Rizzo, Paul A. ; Trievel, Raymond C.</creatorcontrib><description>Lysine methylation has emerged as a prominent covalent modification in histones and non-histone proteins. This modification has been implicated in numerous genomic processes, including heterochromatinization, cell cycle progression, DNA damage response, DNA replication, genome stability, and epigenetic gene regulation that underpins developmental programs defining cell identity and fate. The site and degree of lysine methylation is dynamically modulated through the enzymatic activities of protein lysine methyltransferases (KMTs) and protein lysine demethylases (KDMs). These enzymes display distinct substrate specificities that in part define their biological functions. This review explores recent progress in elucidating the molecular basis of these specificities, highlighting structural and functional studies of the methyltransferases SUV4-20H1 (KMT5B), SUV4-20H2 (KMT5C), and ATXR5, and the demethylases UTX (KDM6A), JMJD3 (KDM6B), and JMJD2D (KDM4D). We conclude by examining these findings in the context of related KMTs and KDMs and by exploring unresolved questions regarding the specificities and functions of these enzymes. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. •The active site structure of SUV4-20 KMTs enables selective H4K20me1 methylation.•ATXR5 monomethylates K27 through specific recognition of A31 in histone H3.1.•UTX and JMJD3 demethylate H3K27me3 through conserved specificity determinants.•Sequence variations in JMJD2 KDMs govern differential recognition of H3K36me3.</description><identifier>ISSN: 1874-9399</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1876-4320</identifier><identifier>DOI: 10.1016/j.bbagrm.2014.06.008</identifier><identifier>PMID: 24946978</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Chromatin ; Histone Demethylases - chemistry ; Histone Demethylases - genetics ; Histone Demethylases - metabolism ; Histone lysine methylation ; Histone-Lysine N-Methyltransferase - chemistry ; Histone-Lysine N-Methyltransferase - genetics ; Histone-Lysine N-Methyltransferase - metabolism ; Histone-Lysine N-Methyltransferase - physiology ; Histones - chemistry ; Histones - metabolism ; Humans ; Lysine - chemistry ; Lysine - metabolism ; Lysine demethylase ; Lysine methyltransferase ; Methylation ; Models, Molecular ; Protein Binding - genetics ; Substrate Specificity ; Transcription</subject><ispartof>Biochimica et biophysica acta, 2014-12, Vol.1839 (12), p.1404-1415</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-a270b77d7c386464f8a3b48a435f4258c6efecd82d20c11910e57bcecd1496043</citedby><cites>FETCH-LOGICAL-c531t-a270b77d7c386464f8a3b48a435f4258c6efecd82d20c11910e57bcecd1496043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24946978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Del Rizzo, Paul A.</creatorcontrib><creatorcontrib>Trievel, Raymond C.</creatorcontrib><title>Molecular basis for substrate recognition by lysine methyltransferases and demethylases</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>Lysine methylation has emerged as a prominent covalent modification in histones and non-histone proteins. This modification has been implicated in numerous genomic processes, including heterochromatinization, cell cycle progression, DNA damage response, DNA replication, genome stability, and epigenetic gene regulation that underpins developmental programs defining cell identity and fate. The site and degree of lysine methylation is dynamically modulated through the enzymatic activities of protein lysine methyltransferases (KMTs) and protein lysine demethylases (KDMs). These enzymes display distinct substrate specificities that in part define their biological functions. This review explores recent progress in elucidating the molecular basis of these specificities, highlighting structural and functional studies of the methyltransferases SUV4-20H1 (KMT5B), SUV4-20H2 (KMT5C), and ATXR5, and the demethylases UTX (KDM6A), JMJD3 (KDM6B), and JMJD2D (KDM4D). We conclude by examining these findings in the context of related KMTs and KDMs and by exploring unresolved questions regarding the specificities and functions of these enzymes. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. •The active site structure of SUV4-20 KMTs enables selective H4K20me1 methylation.•ATXR5 monomethylates K27 through specific recognition of A31 in histone H3.1.•UTX and JMJD3 demethylate H3K27me3 through conserved specificity determinants.•Sequence variations in JMJD2 KDMs govern differential recognition of H3K36me3.</description><subject>Animals</subject><subject>Chromatin</subject><subject>Histone Demethylases - chemistry</subject><subject>Histone Demethylases - genetics</subject><subject>Histone Demethylases - metabolism</subject><subject>Histone lysine methylation</subject><subject>Histone-Lysine N-Methyltransferase - chemistry</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Histone-Lysine N-Methyltransferase - physiology</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Lysine - chemistry</subject><subject>Lysine - metabolism</subject><subject>Lysine demethylase</subject><subject>Lysine methyltransferase</subject><subject>Methylation</subject><subject>Models, Molecular</subject><subject>Protein Binding - genetics</subject><subject>Substrate Specificity</subject><subject>Transcription</subject><issn>1874-9399</issn><issn>0006-3002</issn><issn>1876-4320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3jAMgM1YWbtu_2AMH3dJKjuOnVwKo-wLWnpp6dHYjtL5JR-tlRTefz-_S9vj2ElCeiShh7FPAkoBQp_tSu_dfRpLCUKVoEuA5g07EY3RhaokvP2bq6Kt2vaYvSfaAWghAd6xY6lapVvTnLC7q3nAsA4uce8oEu_nxGn1tCS3IE8Y5vspLnGeuN_zYU9xQj7i8ns_ZGKiHpMjJO6mjne4NQ6FD-yodwPhx-d4ym6_f7u5-FlcXv_4dfH1sgh1JZbCSQPemM6EqtFKq75xlVeNU1XdK1k3QWOPoWtkJyEI0QrA2viQS0K1GlR1yr5sex_S_LgiLXaMFHAY3ITzSlboTOW_zf-gtVQVGNNmVG1oSDNRwt4-pDi6tLcC7MG-3dnNvj3Yt6Bttp_HPj9fWP2I3evQi-4MnG8AZiVPEZOlEHEK2MVserHdHP994Q_Elpic</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Del Rizzo, Paul A.</creator><creator>Trievel, Raymond C.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20141201</creationdate><title>Molecular basis for substrate recognition by lysine methyltransferases and demethylases</title><author>Del Rizzo, Paul A. ; Trievel, Raymond C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-a270b77d7c386464f8a3b48a435f4258c6efecd82d20c11910e57bcecd1496043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Chromatin</topic><topic>Histone Demethylases - chemistry</topic><topic>Histone Demethylases - genetics</topic><topic>Histone Demethylases - metabolism</topic><topic>Histone lysine methylation</topic><topic>Histone-Lysine N-Methyltransferase - chemistry</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Histone-Lysine N-Methyltransferase - physiology</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Lysine - chemistry</topic><topic>Lysine - metabolism</topic><topic>Lysine demethylase</topic><topic>Lysine methyltransferase</topic><topic>Methylation</topic><topic>Models, Molecular</topic><topic>Protein Binding - genetics</topic><topic>Substrate Specificity</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Rizzo, Paul A.</creatorcontrib><creatorcontrib>Trievel, Raymond C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Rizzo, Paul A.</au><au>Trievel, Raymond C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis for substrate recognition by lysine methyltransferases and demethylases</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>1839</volume><issue>12</issue><spage>1404</spage><epage>1415</epage><pages>1404-1415</pages><issn>1874-9399</issn><issn>0006-3002</issn><eissn>1876-4320</eissn><abstract>Lysine methylation has emerged as a prominent covalent modification in histones and non-histone proteins. This modification has been implicated in numerous genomic processes, including heterochromatinization, cell cycle progression, DNA damage response, DNA replication, genome stability, and epigenetic gene regulation that underpins developmental programs defining cell identity and fate. The site and degree of lysine methylation is dynamically modulated through the enzymatic activities of protein lysine methyltransferases (KMTs) and protein lysine demethylases (KDMs). These enzymes display distinct substrate specificities that in part define their biological functions. This review explores recent progress in elucidating the molecular basis of these specificities, highlighting structural and functional studies of the methyltransferases SUV4-20H1 (KMT5B), SUV4-20H2 (KMT5C), and ATXR5, and the demethylases UTX (KDM6A), JMJD3 (KDM6B), and JMJD2D (KDM4D). We conclude by examining these findings in the context of related KMTs and KDMs and by exploring unresolved questions regarding the specificities and functions of these enzymes. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. •The active site structure of SUV4-20 KMTs enables selective H4K20me1 methylation.•ATXR5 monomethylates K27 through specific recognition of A31 in histone H3.1.•UTX and JMJD3 demethylate H3K27me3 through conserved specificity determinants.•Sequence variations in JMJD2 KDMs govern differential recognition of H3K36me3.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24946978</pmid><doi>10.1016/j.bbagrm.2014.06.008</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1874-9399
ispartof Biochimica et biophysica acta, 2014-12, Vol.1839 (12), p.1404-1415
issn 1874-9399
0006-3002
1876-4320
language eng
recordid cdi_proquest_miscellaneous_1660406174
source ScienceDirect Freedom Collection
subjects Animals
Chromatin
Histone Demethylases - chemistry
Histone Demethylases - genetics
Histone Demethylases - metabolism
Histone lysine methylation
Histone-Lysine N-Methyltransferase - chemistry
Histone-Lysine N-Methyltransferase - genetics
Histone-Lysine N-Methyltransferase - metabolism
Histone-Lysine N-Methyltransferase - physiology
Histones - chemistry
Histones - metabolism
Humans
Lysine - chemistry
Lysine - metabolism
Lysine demethylase
Lysine methyltransferase
Methylation
Models, Molecular
Protein Binding - genetics
Substrate Specificity
Transcription
title Molecular basis for substrate recognition by lysine methyltransferases and demethylases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20for%20substrate%20recognition%20by%20lysine%20methyltransferases%20and%20demethylases&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Del%20Rizzo,%20Paul%20A.&rft.date=2014-12-01&rft.volume=1839&rft.issue=12&rft.spage=1404&rft.epage=1415&rft.pages=1404-1415&rft.issn=1874-9399&rft.eissn=1876-4320&rft_id=info:doi/10.1016/j.bbagrm.2014.06.008&rft_dat=%3Cproquest_cross%3E1660406174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-a270b77d7c386464f8a3b48a435f4258c6efecd82d20c11910e57bcecd1496043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652430779&rft_id=info:pmid/24946978&rfr_iscdi=true