Loading…
Stable Low-Voltage Operation Top-Gate Organic Field-Effect Transistors on Cellulose Nanocrystal Substrates
We report on the performance and the characterization of top-gate organic field-effect transistors (OFETs), comprising a bilayer gate dielectric of CYTOP/Al2O3 and a solution-processed semiconductor layer made of a blend of TIPS-pentacene:PTAA, fabricated on recyclable cellulose nanocrystal–glycerol...
Saved in:
Published in: | ACS applied materials & interfaces 2015-03, Vol.7 (8), p.4804-4808 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the performance and the characterization of top-gate organic field-effect transistors (OFETs), comprising a bilayer gate dielectric of CYTOP/Al2O3 and a solution-processed semiconductor layer made of a blend of TIPS-pentacene:PTAA, fabricated on recyclable cellulose nanocrystal–glycerol (CNC/glycerol) substrates. These OFETs exhibit low operating voltage, low threshold voltage, an average field-effect mobility of 0.11 cm2/(V s), and good shelf and operational stability in ambient conditions. To improve the operational stability in ambient a passivation layer of Al2O3 is grown by atomic layer deposition (ALD) directly onto the CNC/glycerol substrates. This layer protects the organic semiconductor layer from moisture and other chemicals that can either permeate through or diffuse out of the substrate. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am508723a |