Loading…

Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices

In this work, we examined the reasons underlying the humidity-induced morphological changes of electrospun fibers and suggest a method of controlling the electrospun fiber morphology under high humidity conditions. We fabricated OPV devices composed of electrospun fibers, and the performance of the...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2015-03, Vol.7 (8), p.4481-4487
Main Authors: Kim, Taehoon, Yang, Seung Jae, Sung, Sae Jin, Kim, Yern Seung, Chang, Mi Se, Jung, Haesol, Park, Chong Rae
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we examined the reasons underlying the humidity-induced morphological changes of electrospun fibers and suggest a method of controlling the electrospun fiber morphology under high humidity conditions. We fabricated OPV devices composed of electrospun fibers, and the performance of the OPV devices depends significantly on the fiber morphology. The evaporation rate of a solvent at various relative humidity was measured to investigate the effects of the relative humidity during electrospinning process. The beaded nanofiber morphology of electrospun fibers was originated due to slow solvent evaporation rate under high humidity conditions. To increase the evaporation rate under high humidity conditions, warm air was applied to the electrospinning system. The beads that would have formed on the electrospun fibers were completely avoided, and the power conversion efficiencies of OPV devices fabricated under high humidity conditions could be restored. These results highlight the simplicity and effectiveness of the proposed method for improving the reproducibility of electrospun nanofibers and performances of devices consisting of the electrospun nanofibers, regardless of the relative humidity.
ISSN:1944-8244
1944-8252
DOI:10.1021/am508250q