Loading…

Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices

In this work, we examined the reasons underlying the humidity-induced morphological changes of electrospun fibers and suggest a method of controlling the electrospun fiber morphology under high humidity conditions. We fabricated OPV devices composed of electrospun fibers, and the performance of the...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2015-03, Vol.7 (8), p.4481-4487
Main Authors: Kim, Taehoon, Yang, Seung Jae, Sung, Sae Jin, Kim, Yern Seung, Chang, Mi Se, Jung, Haesol, Park, Chong Rae
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a315t-1e5da611e697a116975d86f1b2acadedcb7e76fbf8c1f37374c900e86612ff173
cites cdi_FETCH-LOGICAL-a315t-1e5da611e697a116975d86f1b2acadedcb7e76fbf8c1f37374c900e86612ff173
container_end_page 4487
container_issue 8
container_start_page 4481
container_title ACS applied materials & interfaces
container_volume 7
creator Kim, Taehoon
Yang, Seung Jae
Sung, Sae Jin
Kim, Yern Seung
Chang, Mi Se
Jung, Haesol
Park, Chong Rae
description In this work, we examined the reasons underlying the humidity-induced morphological changes of electrospun fibers and suggest a method of controlling the electrospun fiber morphology under high humidity conditions. We fabricated OPV devices composed of electrospun fibers, and the performance of the OPV devices depends significantly on the fiber morphology. The evaporation rate of a solvent at various relative humidity was measured to investigate the effects of the relative humidity during electrospinning process. The beaded nanofiber morphology of electrospun fibers was originated due to slow solvent evaporation rate under high humidity conditions. To increase the evaporation rate under high humidity conditions, warm air was applied to the electrospinning system. The beads that would have formed on the electrospun fibers were completely avoided, and the power conversion efficiencies of OPV devices fabricated under high humidity conditions could be restored. These results highlight the simplicity and effectiveness of the proposed method for improving the reproducibility of electrospun nanofibers and performances of devices consisting of the electrospun nanofibers, regardless of the relative humidity.
doi_str_mv 10.1021/am508250q
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660925722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660925722</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-1e5da611e697a116975d86f1b2acadedcb7e76fbf8c1f37374c900e86612ff173</originalsourceid><addsrcrecordid>eNptkEFPAjEQhRujEUQP_gGzFxM9oJ3utoWjIqgJCcbgwdOm252FJd0ttLsk_HtrQE5eZuZNvrzkPUKugT4AZfCoKk4HjNPNCenCMEn6QbDT450kHXLh_YpSETPKz0mHccGpBNkl32_lYml20Seunc1bXWYGo_kSXWW1rRtnjcE8GhvU4fbrto4mZYYuelY-_GduoepSRx9L29itNY0K4gW3pUZ_Sc4KZTxeHXaPfE3G89Fbfzp7fR89TfsqBt70AXmuBACKoVQAYfJ8IArImNIqx1xnEqUosmKgoYhlLBM9pBQHQgArCpBxj9ztfUOATYu-SavSazRG1Whbn4IQdMi4ZCyg93tUhyzeYZGuXVkpt0uBpr9NpscmA3tzsG2zCvMj-VddAG73gNI-XdnW1SHlP0Y_wG57MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660925722</pqid></control><display><type>article</type><title>Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kim, Taehoon ; Yang, Seung Jae ; Sung, Sae Jin ; Kim, Yern Seung ; Chang, Mi Se ; Jung, Haesol ; Park, Chong Rae</creator><creatorcontrib>Kim, Taehoon ; Yang, Seung Jae ; Sung, Sae Jin ; Kim, Yern Seung ; Chang, Mi Se ; Jung, Haesol ; Park, Chong Rae</creatorcontrib><description>In this work, we examined the reasons underlying the humidity-induced morphological changes of electrospun fibers and suggest a method of controlling the electrospun fiber morphology under high humidity conditions. We fabricated OPV devices composed of electrospun fibers, and the performance of the OPV devices depends significantly on the fiber morphology. The evaporation rate of a solvent at various relative humidity was measured to investigate the effects of the relative humidity during electrospinning process. The beaded nanofiber morphology of electrospun fibers was originated due to slow solvent evaporation rate under high humidity conditions. To increase the evaporation rate under high humidity conditions, warm air was applied to the electrospinning system. The beads that would have formed on the electrospun fibers were completely avoided, and the power conversion efficiencies of OPV devices fabricated under high humidity conditions could be restored. These results highlight the simplicity and effectiveness of the proposed method for improving the reproducibility of electrospun nanofibers and performances of devices consisting of the electrospun nanofibers, regardless of the relative humidity.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am508250q</identifier><identifier>PMID: 25650717</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2015-03, Vol.7 (8), p.4481-4487</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-1e5da611e697a116975d86f1b2acadedcb7e76fbf8c1f37374c900e86612ff173</citedby><cites>FETCH-LOGICAL-a315t-1e5da611e697a116975d86f1b2acadedcb7e76fbf8c1f37374c900e86612ff173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25650717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Yang, Seung Jae</creatorcontrib><creatorcontrib>Sung, Sae Jin</creatorcontrib><creatorcontrib>Kim, Yern Seung</creatorcontrib><creatorcontrib>Chang, Mi Se</creatorcontrib><creatorcontrib>Jung, Haesol</creatorcontrib><creatorcontrib>Park, Chong Rae</creatorcontrib><title>Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this work, we examined the reasons underlying the humidity-induced morphological changes of electrospun fibers and suggest a method of controlling the electrospun fiber morphology under high humidity conditions. We fabricated OPV devices composed of electrospun fibers, and the performance of the OPV devices depends significantly on the fiber morphology. The evaporation rate of a solvent at various relative humidity was measured to investigate the effects of the relative humidity during electrospinning process. The beaded nanofiber morphology of electrospun fibers was originated due to slow solvent evaporation rate under high humidity conditions. To increase the evaporation rate under high humidity conditions, warm air was applied to the electrospinning system. The beads that would have formed on the electrospun fibers were completely avoided, and the power conversion efficiencies of OPV devices fabricated under high humidity conditions could be restored. These results highlight the simplicity and effectiveness of the proposed method for improving the reproducibility of electrospun nanofibers and performances of devices consisting of the electrospun nanofibers, regardless of the relative humidity.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkEFPAjEQhRujEUQP_gGzFxM9oJ3utoWjIqgJCcbgwdOm252FJd0ttLsk_HtrQE5eZuZNvrzkPUKugT4AZfCoKk4HjNPNCenCMEn6QbDT450kHXLh_YpSETPKz0mHccGpBNkl32_lYml20Seunc1bXWYGo_kSXWW1rRtnjcE8GhvU4fbrto4mZYYuelY-_GduoepSRx9L29itNY0K4gW3pUZ_Sc4KZTxeHXaPfE3G89Fbfzp7fR89TfsqBt70AXmuBACKoVQAYfJ8IArImNIqx1xnEqUosmKgoYhlLBM9pBQHQgArCpBxj9ztfUOATYu-SavSazRG1Whbn4IQdMi4ZCyg93tUhyzeYZGuXVkpt0uBpr9NpscmA3tzsG2zCvMj-VddAG73gNI-XdnW1SHlP0Y_wG57MA</recordid><startdate>20150304</startdate><enddate>20150304</enddate><creator>Kim, Taehoon</creator><creator>Yang, Seung Jae</creator><creator>Sung, Sae Jin</creator><creator>Kim, Yern Seung</creator><creator>Chang, Mi Se</creator><creator>Jung, Haesol</creator><creator>Park, Chong Rae</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150304</creationdate><title>Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices</title><author>Kim, Taehoon ; Yang, Seung Jae ; Sung, Sae Jin ; Kim, Yern Seung ; Chang, Mi Se ; Jung, Haesol ; Park, Chong Rae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-1e5da611e697a116975d86f1b2acadedcb7e76fbf8c1f37374c900e86612ff173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Yang, Seung Jae</creatorcontrib><creatorcontrib>Sung, Sae Jin</creatorcontrib><creatorcontrib>Kim, Yern Seung</creatorcontrib><creatorcontrib>Chang, Mi Se</creatorcontrib><creatorcontrib>Jung, Haesol</creatorcontrib><creatorcontrib>Park, Chong Rae</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Taehoon</au><au>Yang, Seung Jae</au><au>Sung, Sae Jin</au><au>Kim, Yern Seung</au><au>Chang, Mi Se</au><au>Jung, Haesol</au><au>Park, Chong Rae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-03-04</date><risdate>2015</risdate><volume>7</volume><issue>8</issue><spage>4481</spage><epage>4487</epage><pages>4481-4487</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this work, we examined the reasons underlying the humidity-induced morphological changes of electrospun fibers and suggest a method of controlling the electrospun fiber morphology under high humidity conditions. We fabricated OPV devices composed of electrospun fibers, and the performance of the OPV devices depends significantly on the fiber morphology. The evaporation rate of a solvent at various relative humidity was measured to investigate the effects of the relative humidity during electrospinning process. The beaded nanofiber morphology of electrospun fibers was originated due to slow solvent evaporation rate under high humidity conditions. To increase the evaporation rate under high humidity conditions, warm air was applied to the electrospinning system. The beads that would have formed on the electrospun fibers were completely avoided, and the power conversion efficiencies of OPV devices fabricated under high humidity conditions could be restored. These results highlight the simplicity and effectiveness of the proposed method for improving the reproducibility of electrospun nanofibers and performances of devices consisting of the electrospun nanofibers, regardless of the relative humidity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25650717</pmid><doi>10.1021/am508250q</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2015-03, Vol.7 (8), p.4481-4487
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1660925722
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Reproducible%20Thermocontrolled%20Electrospun%20Fiber%20Based%20Organic%20Photovoltaic%20Devices&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kim,%20Taehoon&rft.date=2015-03-04&rft.volume=7&rft.issue=8&rft.spage=4481&rft.epage=4487&rft.pages=4481-4487&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am508250q&rft_dat=%3Cproquest_cross%3E1660925722%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-1e5da611e697a116975d86f1b2acadedcb7e76fbf8c1f37374c900e86612ff173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660925722&rft_id=info:pmid/25650717&rfr_iscdi=true