Loading…
The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications
Rad3 protein of Saccharomyces cerevisiae is a DNA-dependent ATPase that acts as a DNA helicase on partially duplex substrates. Rad3 protein is required for damage-specific incision of DNA during the nucleotide excision repair (NER) pathway in yeast. Helicase II of Escherichia coli is also a DNA heli...
Saved in:
Published in: | The Journal of biological chemistry 1993-05, Vol.268 (14), p.10386-10392 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c581t-fcf897666373c6f497707069da2bed11eaf34893f12732e5933b0667f868c0063 |
---|---|
cites | |
container_end_page | 10392 |
container_issue | 14 |
container_start_page | 10386 |
container_title | The Journal of biological chemistry |
container_volume | 268 |
creator | Naegeli, H. Modrich, P. Friedberg, E.C. |
description | Rad3 protein of Saccharomyces cerevisiae is a DNA-dependent ATPase that acts as a DNA helicase on partially duplex substrates. Rad3 protein is required for damage-specific incision of DNA during the nucleotide excision repair (NER) pathway in yeast. Helicase II of Escherichia coli is also a DNA helicase, but it is involved in postincision events in NER. Previous investigations have demonstrated that the DNA helicase activities of Rad3 protein and helicase II are both inhibited by DNA damage. In the present study we have compared the response of yeast Rad3 protein and E. coli helicase II to a broad spectrum of DNA modifications. The Rad3 helicase activity is considerably more sensitive to ultraviolet radiation damage and cisplatin adducts in DNA than to drugs that interact noncovalently with duplex DNA. Conversely, E. coli helicase II is highly sensitive to noncovalent DNA modifications but less sensitive than Rad3 protein to ultraviolet radiation damage or cisplatin adducts. We also show that Rad3 protein and helicase II differ in their ability to form stable protein-DNA complexes at sites of DNA damage. Hence, DNA helicases that catalyze distinct steps in NER respond differently to chemical and conformational states of the DNA substrate. The observation that Rad3 protein is particularly sensitive to covalent but not noncovalent alterations in DNA structure is consistent with the hypothesis that this enzyme may have adopted a highly specialized role in damage-specific recognition during NER. |
doi_str_mv | 10.1016/S0021-9258(18)82213-X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16626043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192581882213X</els_id><sourcerecordid>16626043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-fcf897666373c6f497707069da2bed11eaf34893f12732e5933b0667f868c0063</originalsourceid><addsrcrecordid>eNqFkVGL1DAUhYMo67j6B4SFPIjoQzVp2jR9kmVddWBRcHZh3kKa3myvtM2adEbmj_n7TGeG2UfzEsL5zklyDyEXnH3gjMuPK8ZyntV5qd5x9V7lORfZ-glZcKZEJkq-fkoWJ-Q5eRHjL5ZWUfMzcqaEqkquFuTvbQf08_dL2kGP1kSgxk64xQkhUu_oT9MK-hD8BDjO55WxtjPBDzubAAsBthjRJNvYPmYslzN7HW0HAW2HhlrfIzUBaIvOJdc4oen7HcWxwwYnaGmzS9DW9Enah41-PJ3nBw4-WVP8hH6ML8kzZ_oIr477Obn7cn179S27-fF1eXV5k9lS8Slz1qm6klKKSljpirqqWMVk3Zq8gZZzME4UqhaO55XIoayFaJiUlVNSWcakOCdvD7lpBL83ECc9YLTQ92YEv4maS5lLVogElgfQBh9jAKcfAg4m7DRneu5L7_vScxmaK73vS6-T7-J4waYZoD25jgUl_c1RN9Ga3gUzWownrKgqLhV_xDq87_5gAN2gT9MfdC7TfUV6glDzd14fMGe8NvchJd2t6kLkSrEkfjqIkAa6RQg6WoTRQpvy7KRbj__5zD9JRcfT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16626043</pqid></control><display><type>article</type><title>The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications</title><source>ScienceDirect Journals</source><creator>Naegeli, H. ; Modrich, P. ; Friedberg, E.C.</creator><creatorcontrib>Naegeli, H. ; Modrich, P. ; Friedberg, E.C.</creatorcontrib><description>Rad3 protein of Saccharomyces cerevisiae is a DNA-dependent ATPase that acts as a DNA helicase on partially duplex substrates. Rad3 protein is required for damage-specific incision of DNA during the nucleotide excision repair (NER) pathway in yeast. Helicase II of Escherichia coli is also a DNA helicase, but it is involved in postincision events in NER. Previous investigations have demonstrated that the DNA helicase activities of Rad3 protein and helicase II are both inhibited by DNA damage. In the present study we have compared the response of yeast Rad3 protein and E. coli helicase II to a broad spectrum of DNA modifications. The Rad3 helicase activity is considerably more sensitive to ultraviolet radiation damage and cisplatin adducts in DNA than to drugs that interact noncovalently with duplex DNA. Conversely, E. coli helicase II is highly sensitive to noncovalent DNA modifications but less sensitive than Rad3 protein to ultraviolet radiation damage or cisplatin adducts. We also show that Rad3 protein and helicase II differ in their ability to form stable protein-DNA complexes at sites of DNA damage. Hence, DNA helicases that catalyze distinct steps in NER respond differently to chemical and conformational states of the DNA substrate. The observation that Rad3 protein is particularly sensitive to covalent but not noncovalent alterations in DNA structure is consistent with the hypothesis that this enzyme may have adopted a highly specialized role in damage-specific recognition during NER.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)82213-X</identifier><identifier>PMID: 8387518</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; ADENOSINA TRIFOSFATASA ; ADENOSINE TRIPHOSPHATASE ; Adenosine Triphosphatases - antagonists & inhibitors ; Adenosine Triphosphatases - metabolism ; ADN ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Cisplatin - pharmacology ; DNA Damage ; DNA Helicases - antagonists & inhibitors ; DNA Helicases - metabolism ; DNA Repair ; DNA, Single-Stranded - drug effects ; DNA, Single-Stranded - metabolism ; DNA, Single-Stranded - radiation effects ; DNA, Viral - drug effects ; DNA, Viral - metabolism ; DNA, Viral - radiation effects ; Dose-Response Relationship, Radiation ; ENZIMAS ; ENZYME ; Enzymes and enzyme inhibitors ; Escherichia coli ; Escherichia coli - enzymology ; Fundamental and applied biological sciences. Psychology ; Hydrolases ; Kinetics ; Oligodeoxyribonucleotides - metabolism ; Polymerase Chain Reaction - methods ; PROTEINAS ; PROTEINE ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins ; Substrate Specificity ; Ultraviolet Rays</subject><ispartof>The Journal of biological chemistry, 1993-05, Vol.268 (14), p.10386-10392</ispartof><rights>1993 © 1993 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-fcf897666373c6f497707069da2bed11eaf34893f12732e5933b0667f868c0063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002192581882213X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4771681$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8387518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naegeli, H.</creatorcontrib><creatorcontrib>Modrich, P.</creatorcontrib><creatorcontrib>Friedberg, E.C.</creatorcontrib><title>The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Rad3 protein of Saccharomyces cerevisiae is a DNA-dependent ATPase that acts as a DNA helicase on partially duplex substrates. Rad3 protein is required for damage-specific incision of DNA during the nucleotide excision repair (NER) pathway in yeast. Helicase II of Escherichia coli is also a DNA helicase, but it is involved in postincision events in NER. Previous investigations have demonstrated that the DNA helicase activities of Rad3 protein and helicase II are both inhibited by DNA damage. In the present study we have compared the response of yeast Rad3 protein and E. coli helicase II to a broad spectrum of DNA modifications. The Rad3 helicase activity is considerably more sensitive to ultraviolet radiation damage and cisplatin adducts in DNA than to drugs that interact noncovalently with duplex DNA. Conversely, E. coli helicase II is highly sensitive to noncovalent DNA modifications but less sensitive than Rad3 protein to ultraviolet radiation damage or cisplatin adducts. We also show that Rad3 protein and helicase II differ in their ability to form stable protein-DNA complexes at sites of DNA damage. Hence, DNA helicases that catalyze distinct steps in NER respond differently to chemical and conformational states of the DNA substrate. The observation that Rad3 protein is particularly sensitive to covalent but not noncovalent alterations in DNA structure is consistent with the hypothesis that this enzyme may have adopted a highly specialized role in damage-specific recognition during NER.</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>ADENOSINA TRIFOSFATASA</subject><subject>ADENOSINE TRIPHOSPHATASE</subject><subject>Adenosine Triphosphatases - antagonists & inhibitors</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>ADN</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cisplatin - pharmacology</subject><subject>DNA Damage</subject><subject>DNA Helicases - antagonists & inhibitors</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Repair</subject><subject>DNA, Single-Stranded - drug effects</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>DNA, Single-Stranded - radiation effects</subject><subject>DNA, Viral - drug effects</subject><subject>DNA, Viral - metabolism</subject><subject>DNA, Viral - radiation effects</subject><subject>Dose-Response Relationship, Radiation</subject><subject>ENZIMAS</subject><subject>ENZYME</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrolases</subject><subject>Kinetics</subject><subject>Oligodeoxyribonucleotides - metabolism</subject><subject>Polymerase Chain Reaction - methods</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Substrate Specificity</subject><subject>Ultraviolet Rays</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkVGL1DAUhYMo67j6B4SFPIjoQzVp2jR9kmVddWBRcHZh3kKa3myvtM2adEbmj_n7TGeG2UfzEsL5zklyDyEXnH3gjMuPK8ZyntV5qd5x9V7lORfZ-glZcKZEJkq-fkoWJ-Q5eRHjL5ZWUfMzcqaEqkquFuTvbQf08_dL2kGP1kSgxk64xQkhUu_oT9MK-hD8BDjO55WxtjPBDzubAAsBthjRJNvYPmYslzN7HW0HAW2HhlrfIzUBaIvOJdc4oen7HcWxwwYnaGmzS9DW9Enah41-PJ3nBw4-WVP8hH6ML8kzZ_oIr477Obn7cn179S27-fF1eXV5k9lS8Slz1qm6klKKSljpirqqWMVk3Zq8gZZzME4UqhaO55XIoayFaJiUlVNSWcakOCdvD7lpBL83ECc9YLTQ92YEv4maS5lLVogElgfQBh9jAKcfAg4m7DRneu5L7_vScxmaK73vS6-T7-J4waYZoD25jgUl_c1RN9Ga3gUzWownrKgqLhV_xDq87_5gAN2gT9MfdC7TfUV6glDzd14fMGe8NvchJd2t6kLkSrEkfjqIkAa6RQg6WoTRQpvy7KRbj__5zD9JRcfT</recordid><startdate>19930515</startdate><enddate>19930515</enddate><creator>Naegeli, H.</creator><creator>Modrich, P.</creator><creator>Friedberg, E.C.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>M7N</scope></search><sort><creationdate>19930515</creationdate><title>The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications</title><author>Naegeli, H. ; Modrich, P. ; Friedberg, E.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-fcf897666373c6f497707069da2bed11eaf34893f12732e5933b0667f868c0063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>ADENOSINA TRIFOSFATASA</topic><topic>ADENOSINE TRIPHOSPHATASE</topic><topic>Adenosine Triphosphatases - antagonists & inhibitors</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>ADN</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cisplatin - pharmacology</topic><topic>DNA Damage</topic><topic>DNA Helicases - antagonists & inhibitors</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Repair</topic><topic>DNA, Single-Stranded - drug effects</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>DNA, Single-Stranded - radiation effects</topic><topic>DNA, Viral - drug effects</topic><topic>DNA, Viral - metabolism</topic><topic>DNA, Viral - radiation effects</topic><topic>Dose-Response Relationship, Radiation</topic><topic>ENZIMAS</topic><topic>ENZYME</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrolases</topic><topic>Kinetics</topic><topic>Oligodeoxyribonucleotides - metabolism</topic><topic>Polymerase Chain Reaction - methods</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Substrate Specificity</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naegeli, H.</creatorcontrib><creatorcontrib>Modrich, P.</creatorcontrib><creatorcontrib>Friedberg, E.C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naegeli, H.</au><au>Modrich, P.</au><au>Friedberg, E.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1993-05-15</date><risdate>1993</risdate><volume>268</volume><issue>14</issue><spage>10386</spage><epage>10392</epage><pages>10386-10392</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>Rad3 protein of Saccharomyces cerevisiae is a DNA-dependent ATPase that acts as a DNA helicase on partially duplex substrates. Rad3 protein is required for damage-specific incision of DNA during the nucleotide excision repair (NER) pathway in yeast. Helicase II of Escherichia coli is also a DNA helicase, but it is involved in postincision events in NER. Previous investigations have demonstrated that the DNA helicase activities of Rad3 protein and helicase II are both inhibited by DNA damage. In the present study we have compared the response of yeast Rad3 protein and E. coli helicase II to a broad spectrum of DNA modifications. The Rad3 helicase activity is considerably more sensitive to ultraviolet radiation damage and cisplatin adducts in DNA than to drugs that interact noncovalently with duplex DNA. Conversely, E. coli helicase II is highly sensitive to noncovalent DNA modifications but less sensitive than Rad3 protein to ultraviolet radiation damage or cisplatin adducts. We also show that Rad3 protein and helicase II differ in their ability to form stable protein-DNA complexes at sites of DNA damage. Hence, DNA helicases that catalyze distinct steps in NER respond differently to chemical and conformational states of the DNA substrate. The observation that Rad3 protein is particularly sensitive to covalent but not noncovalent alterations in DNA structure is consistent with the hypothesis that this enzyme may have adopted a highly specialized role in damage-specific recognition during NER.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>8387518</pmid><doi>10.1016/S0021-9258(18)82213-X</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1993-05, Vol.268 (14), p.10386-10392 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_16626043 |
source | ScienceDirect Journals |
subjects | ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE ADENOSINA TRIFOSFATASA ADENOSINE TRIPHOSPHATASE Adenosine Triphosphatases - antagonists & inhibitors Adenosine Triphosphatases - metabolism ADN Analytical, structural and metabolic biochemistry Biological and medical sciences Cisplatin - pharmacology DNA Damage DNA Helicases - antagonists & inhibitors DNA Helicases - metabolism DNA Repair DNA, Single-Stranded - drug effects DNA, Single-Stranded - metabolism DNA, Single-Stranded - radiation effects DNA, Viral - drug effects DNA, Viral - metabolism DNA, Viral - radiation effects Dose-Response Relationship, Radiation ENZIMAS ENZYME Enzymes and enzyme inhibitors Escherichia coli Escherichia coli - enzymology Fundamental and applied biological sciences. Psychology Hydrolases Kinetics Oligodeoxyribonucleotides - metabolism Polymerase Chain Reaction - methods PROTEINAS PROTEINE SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae Proteins Substrate Specificity Ultraviolet Rays |
title | The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20DNA%20helicase%20activities%20of%20Rad3%20protein%20of%20Saccharomyces%20cerevisiae%20and%20helicase%20II%20of%20Escherichia%20coli%20are%20differentially%20inhibited%20by%20covalent%20and%20noncovalent%20DNA%20modifications&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Naegeli,%20H.&rft.date=1993-05-15&rft.volume=268&rft.issue=14&rft.spage=10386&rft.epage=10392&rft.pages=10386-10392&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)82213-X&rft_dat=%3Cproquest_cross%3E16626043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c581t-fcf897666373c6f497707069da2bed11eaf34893f12732e5933b0667f868c0063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16626043&rft_id=info:pmid/8387518&rfr_iscdi=true |