Loading…

Modeling the Oxidation of Methionine Residues by Peroxides in Proteins

We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical sciences 2015-04, Vol.104 (4), p.1246-1255
Main Authors: Chennamsetty, Naresh, Quan, Yong, Nashine, Vishal, Sadineni, Ikram, Lyngberg, Olav, Krystek, Stanley
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43
cites cdi_FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43
container_end_page 1255
container_issue 4
container_start_page 1246
container_title Journal of pharmaceutical sciences
container_volume 104
creator Chennamsetty, Naresh
Quan, Yong
Nashine, Vishal
Sadineni, Ikram
Lyngberg, Olav
Krystek, Stanley
description We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues.
doi_str_mv 10.1002/jps.24340
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664199942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354915301489</els_id><sourcerecordid>3621921251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43</originalsourceid><addsrcrecordid>eNp1kEtPAjEYRRujEUQX_gEziRtdDLTTxzBLQ8RHJBAf62Zov5GSYYrtjMq_twi4MLr6-ji9uT0InRLcJRgnvfnSdxNGGd5DbcITHAtM0n3UDndJTDnLWujI-znGWGDOD1Er4YIRSmkbDUdWQ2mq16ieQTT-NDqvja0iW0QjqGdhaSqIHsEb3YCPpqtoAs4GLGxMFU2crcFU_hgdFHnp4WQ7O-hleP08uI0fxjd3g6uHWHFKccwpD1MoDVilCmeUca2ApKFnUTA-VfkU-qTQjIp-X6Qp4KTQqmCC65zm4biDLja5S2ffQqFaLoxXUJZ5BbbxkojwsSzLWBLQ81_o3DauCu3WVML6JBNr6nJDKWe9d1DIpTOL3K0kwXItVwa58ltuYM-2ic10AfqH3NkMQG8DfJgSVv8nyfvJ0y6Sbl5AkPZuwEmvDFQKtHGgaqmt-aPIF6cPk64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662481962</pqid></control><display><type>article</type><title>Modeling the Oxidation of Methionine Residues by Peroxides in Proteins</title><source>ScienceDirect Journals</source><source>Wiley Online Library All Journals</source><creator>Chennamsetty, Naresh ; Quan, Yong ; Nashine, Vishal ; Sadineni, Ikram ; Lyngberg, Olav ; Krystek, Stanley</creator><creatorcontrib>Chennamsetty, Naresh ; Quan, Yong ; Nashine, Vishal ; Sadineni, Ikram ; Lyngberg, Olav ; Krystek, Stanley</creatorcontrib><description>We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues.</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.24340</identifier><identifier>PMID: 25641333</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>biophysical models ; Chemistry, Pharmaceutical ; computer aided drug design ; Computer-Aided Design ; Drug Design ; in silico modeling ; Methionine ; Models, Chemical ; molecular dynamics ; Molecular Dynamics Simulation ; molecular modeling ; oxidation ; Oxidation-Reduction ; Peroxides - chemistry ; physicochemical properties ; Protein Conformation ; Protein Denaturation ; protein formulation ; Protein Stability ; protein structure ; Proteins - chemistry ; Solvents - chemistry ; stabilization ; Sulfoxides - chemistry ; Water - chemistry</subject><ispartof>Journal of pharmaceutical sciences, 2015-04, Vol.104 (4), p.1246-1255</ispartof><rights>2015 Wiley Periodicals, Inc. and the American Pharmacists Association</rights><rights>2015 Wiley Periodicals, Inc. and the American Pharmacists Association.</rights><rights>Copyright © 2015 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43</citedby><cites>FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.24340$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022354915301489$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,1417,3549,27924,27925,45574,45575,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25641333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chennamsetty, Naresh</creatorcontrib><creatorcontrib>Quan, Yong</creatorcontrib><creatorcontrib>Nashine, Vishal</creatorcontrib><creatorcontrib>Sadineni, Ikram</creatorcontrib><creatorcontrib>Lyngberg, Olav</creatorcontrib><creatorcontrib>Krystek, Stanley</creatorcontrib><title>Modeling the Oxidation of Methionine Residues by Peroxides in Proteins</title><title>Journal of pharmaceutical sciences</title><addtitle>J Pharm Sci</addtitle><description>We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues.</description><subject>biophysical models</subject><subject>Chemistry, Pharmaceutical</subject><subject>computer aided drug design</subject><subject>Computer-Aided Design</subject><subject>Drug Design</subject><subject>in silico modeling</subject><subject>Methionine</subject><subject>Models, Chemical</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>molecular modeling</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peroxides - chemistry</subject><subject>physicochemical properties</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>protein formulation</subject><subject>Protein Stability</subject><subject>protein structure</subject><subject>Proteins - chemistry</subject><subject>Solvents - chemistry</subject><subject>stabilization</subject><subject>Sulfoxides - chemistry</subject><subject>Water - chemistry</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAjEYRRujEUQX_gEziRtdDLTTxzBLQ8RHJBAf62Zov5GSYYrtjMq_twi4MLr6-ji9uT0InRLcJRgnvfnSdxNGGd5DbcITHAtM0n3UDndJTDnLWujI-znGWGDOD1Er4YIRSmkbDUdWQ2mq16ieQTT-NDqvja0iW0QjqGdhaSqIHsEb3YCPpqtoAs4GLGxMFU2crcFU_hgdFHnp4WQ7O-hleP08uI0fxjd3g6uHWHFKccwpD1MoDVilCmeUca2ApKFnUTA-VfkU-qTQjIp-X6Qp4KTQqmCC65zm4biDLja5S2ffQqFaLoxXUJZ5BbbxkojwsSzLWBLQ81_o3DauCu3WVML6JBNr6nJDKWe9d1DIpTOL3K0kwXItVwa58ltuYM-2ic10AfqH3NkMQG8DfJgSVv8nyfvJ0y6Sbl5AkPZuwEmvDFQKtHGgaqmt-aPIF6cPk64</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Chennamsetty, Naresh</creator><creator>Quan, Yong</creator><creator>Nashine, Vishal</creator><creator>Sadineni, Ikram</creator><creator>Lyngberg, Olav</creator><creator>Krystek, Stanley</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201504</creationdate><title>Modeling the Oxidation of Methionine Residues by Peroxides in Proteins</title><author>Chennamsetty, Naresh ; Quan, Yong ; Nashine, Vishal ; Sadineni, Ikram ; Lyngberg, Olav ; Krystek, Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>biophysical models</topic><topic>Chemistry, Pharmaceutical</topic><topic>computer aided drug design</topic><topic>Computer-Aided Design</topic><topic>Drug Design</topic><topic>in silico modeling</topic><topic>Methionine</topic><topic>Models, Chemical</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>molecular modeling</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peroxides - chemistry</topic><topic>physicochemical properties</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>protein formulation</topic><topic>Protein Stability</topic><topic>protein structure</topic><topic>Proteins - chemistry</topic><topic>Solvents - chemistry</topic><topic>stabilization</topic><topic>Sulfoxides - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chennamsetty, Naresh</creatorcontrib><creatorcontrib>Quan, Yong</creatorcontrib><creatorcontrib>Nashine, Vishal</creatorcontrib><creatorcontrib>Sadineni, Ikram</creatorcontrib><creatorcontrib>Lyngberg, Olav</creatorcontrib><creatorcontrib>Krystek, Stanley</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chennamsetty, Naresh</au><au>Quan, Yong</au><au>Nashine, Vishal</au><au>Sadineni, Ikram</au><au>Lyngberg, Olav</au><au>Krystek, Stanley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Oxidation of Methionine Residues by Peroxides in Proteins</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J Pharm Sci</addtitle><date>2015-04</date><risdate>2015</risdate><volume>104</volume><issue>4</issue><spage>1246</spage><epage>1255</epage><pages>1246-1255</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25641333</pmid><doi>10.1002/jps.24340</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3549
ispartof Journal of pharmaceutical sciences, 2015-04, Vol.104 (4), p.1246-1255
issn 0022-3549
1520-6017
language eng
recordid cdi_proquest_miscellaneous_1664199942
source ScienceDirect Journals; Wiley Online Library All Journals
subjects biophysical models
Chemistry, Pharmaceutical
computer aided drug design
Computer-Aided Design
Drug Design
in silico modeling
Methionine
Models, Chemical
molecular dynamics
Molecular Dynamics Simulation
molecular modeling
oxidation
Oxidation-Reduction
Peroxides - chemistry
physicochemical properties
Protein Conformation
Protein Denaturation
protein formulation
Protein Stability
protein structure
Proteins - chemistry
Solvents - chemistry
stabilization
Sulfoxides - chemistry
Water - chemistry
title Modeling the Oxidation of Methionine Residues by Peroxides in Proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Oxidation%20of%20Methionine%20Residues%20by%20Peroxides%20in%20Proteins&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Chennamsetty,%20Naresh&rft.date=2015-04&rft.volume=104&rft.issue=4&rft.spage=1246&rft.epage=1255&rft.pages=1246-1255&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.24340&rft_dat=%3Cproquest_cross%3E3621921251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1662481962&rft_id=info:pmid/25641333&rfr_iscdi=true