Loading…
Modeling the Oxidation of Methionine Residues by Peroxides in Proteins
We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceu...
Saved in:
Published in: | Journal of pharmaceutical sciences 2015-04, Vol.104 (4), p.1246-1255 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43 |
---|---|
cites | cdi_FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43 |
container_end_page | 1255 |
container_issue | 4 |
container_start_page | 1246 |
container_title | Journal of pharmaceutical sciences |
container_volume | 104 |
creator | Chennamsetty, Naresh Quan, Yong Nashine, Vishal Sadineni, Ikram Lyngberg, Olav Krystek, Stanley |
description | We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues. |
doi_str_mv | 10.1002/jps.24340 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664199942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354915301489</els_id><sourcerecordid>3621921251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43</originalsourceid><addsrcrecordid>eNp1kEtPAjEYRRujEUQX_gEziRtdDLTTxzBLQ8RHJBAf62Zov5GSYYrtjMq_twi4MLr6-ji9uT0InRLcJRgnvfnSdxNGGd5DbcITHAtM0n3UDndJTDnLWujI-znGWGDOD1Er4YIRSmkbDUdWQ2mq16ieQTT-NDqvja0iW0QjqGdhaSqIHsEb3YCPpqtoAs4GLGxMFU2crcFU_hgdFHnp4WQ7O-hleP08uI0fxjd3g6uHWHFKccwpD1MoDVilCmeUca2ApKFnUTA-VfkU-qTQjIp-X6Qp4KTQqmCC65zm4biDLja5S2ffQqFaLoxXUJZ5BbbxkojwsSzLWBLQ81_o3DauCu3WVML6JBNr6nJDKWe9d1DIpTOL3K0kwXItVwa58ltuYM-2ic10AfqH3NkMQG8DfJgSVv8nyfvJ0y6Sbl5AkPZuwEmvDFQKtHGgaqmt-aPIF6cPk64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662481962</pqid></control><display><type>article</type><title>Modeling the Oxidation of Methionine Residues by Peroxides in Proteins</title><source>ScienceDirect Journals</source><source>Wiley Online Library All Journals</source><creator>Chennamsetty, Naresh ; Quan, Yong ; Nashine, Vishal ; Sadineni, Ikram ; Lyngberg, Olav ; Krystek, Stanley</creator><creatorcontrib>Chennamsetty, Naresh ; Quan, Yong ; Nashine, Vishal ; Sadineni, Ikram ; Lyngberg, Olav ; Krystek, Stanley</creatorcontrib><description>We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues.</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.24340</identifier><identifier>PMID: 25641333</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>biophysical models ; Chemistry, Pharmaceutical ; computer aided drug design ; Computer-Aided Design ; Drug Design ; in silico modeling ; Methionine ; Models, Chemical ; molecular dynamics ; Molecular Dynamics Simulation ; molecular modeling ; oxidation ; Oxidation-Reduction ; Peroxides - chemistry ; physicochemical properties ; Protein Conformation ; Protein Denaturation ; protein formulation ; Protein Stability ; protein structure ; Proteins - chemistry ; Solvents - chemistry ; stabilization ; Sulfoxides - chemistry ; Water - chemistry</subject><ispartof>Journal of pharmaceutical sciences, 2015-04, Vol.104 (4), p.1246-1255</ispartof><rights>2015 Wiley Periodicals, Inc. and the American Pharmacists Association</rights><rights>2015 Wiley Periodicals, Inc. and the American Pharmacists Association.</rights><rights>Copyright © 2015 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43</citedby><cites>FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.24340$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022354915301489$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,1417,3549,27924,27925,45574,45575,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25641333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chennamsetty, Naresh</creatorcontrib><creatorcontrib>Quan, Yong</creatorcontrib><creatorcontrib>Nashine, Vishal</creatorcontrib><creatorcontrib>Sadineni, Ikram</creatorcontrib><creatorcontrib>Lyngberg, Olav</creatorcontrib><creatorcontrib>Krystek, Stanley</creatorcontrib><title>Modeling the Oxidation of Methionine Residues by Peroxides in Proteins</title><title>Journal of pharmaceutical sciences</title><addtitle>J Pharm Sci</addtitle><description>We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues.</description><subject>biophysical models</subject><subject>Chemistry, Pharmaceutical</subject><subject>computer aided drug design</subject><subject>Computer-Aided Design</subject><subject>Drug Design</subject><subject>in silico modeling</subject><subject>Methionine</subject><subject>Models, Chemical</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>molecular modeling</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peroxides - chemistry</subject><subject>physicochemical properties</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>protein formulation</subject><subject>Protein Stability</subject><subject>protein structure</subject><subject>Proteins - chemistry</subject><subject>Solvents - chemistry</subject><subject>stabilization</subject><subject>Sulfoxides - chemistry</subject><subject>Water - chemistry</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAjEYRRujEUQX_gEziRtdDLTTxzBLQ8RHJBAf62Zov5GSYYrtjMq_twi4MLr6-ji9uT0InRLcJRgnvfnSdxNGGd5DbcITHAtM0n3UDndJTDnLWujI-znGWGDOD1Er4YIRSmkbDUdWQ2mq16ieQTT-NDqvja0iW0QjqGdhaSqIHsEb3YCPpqtoAs4GLGxMFU2crcFU_hgdFHnp4WQ7O-hleP08uI0fxjd3g6uHWHFKccwpD1MoDVilCmeUca2ApKFnUTA-VfkU-qTQjIp-X6Qp4KTQqmCC65zm4biDLja5S2ffQqFaLoxXUJZ5BbbxkojwsSzLWBLQ81_o3DauCu3WVML6JBNr6nJDKWe9d1DIpTOL3K0kwXItVwa58ltuYM-2ic10AfqH3NkMQG8DfJgSVv8nyfvJ0y6Sbl5AkPZuwEmvDFQKtHGgaqmt-aPIF6cPk64</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Chennamsetty, Naresh</creator><creator>Quan, Yong</creator><creator>Nashine, Vishal</creator><creator>Sadineni, Ikram</creator><creator>Lyngberg, Olav</creator><creator>Krystek, Stanley</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201504</creationdate><title>Modeling the Oxidation of Methionine Residues by Peroxides in Proteins</title><author>Chennamsetty, Naresh ; Quan, Yong ; Nashine, Vishal ; Sadineni, Ikram ; Lyngberg, Olav ; Krystek, Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>biophysical models</topic><topic>Chemistry, Pharmaceutical</topic><topic>computer aided drug design</topic><topic>Computer-Aided Design</topic><topic>Drug Design</topic><topic>in silico modeling</topic><topic>Methionine</topic><topic>Models, Chemical</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>molecular modeling</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peroxides - chemistry</topic><topic>physicochemical properties</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>protein formulation</topic><topic>Protein Stability</topic><topic>protein structure</topic><topic>Proteins - chemistry</topic><topic>Solvents - chemistry</topic><topic>stabilization</topic><topic>Sulfoxides - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chennamsetty, Naresh</creatorcontrib><creatorcontrib>Quan, Yong</creatorcontrib><creatorcontrib>Nashine, Vishal</creatorcontrib><creatorcontrib>Sadineni, Ikram</creatorcontrib><creatorcontrib>Lyngberg, Olav</creatorcontrib><creatorcontrib>Krystek, Stanley</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chennamsetty, Naresh</au><au>Quan, Yong</au><au>Nashine, Vishal</au><au>Sadineni, Ikram</au><au>Lyngberg, Olav</au><au>Krystek, Stanley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Oxidation of Methionine Residues by Peroxides in Proteins</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J Pharm Sci</addtitle><date>2015-04</date><risdate>2015</risdate><volume>104</volume><issue>4</issue><spage>1246</spage><epage>1255</epage><pages>1246-1255</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25641333</pmid><doi>10.1002/jps.24340</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 2015-04, Vol.104 (4), p.1246-1255 |
issn | 0022-3549 1520-6017 |
language | eng |
recordid | cdi_proquest_miscellaneous_1664199942 |
source | ScienceDirect Journals; Wiley Online Library All Journals |
subjects | biophysical models Chemistry, Pharmaceutical computer aided drug design Computer-Aided Design Drug Design in silico modeling Methionine Models, Chemical molecular dynamics Molecular Dynamics Simulation molecular modeling oxidation Oxidation-Reduction Peroxides - chemistry physicochemical properties Protein Conformation Protein Denaturation protein formulation Protein Stability protein structure Proteins - chemistry Solvents - chemistry stabilization Sulfoxides - chemistry Water - chemistry |
title | Modeling the Oxidation of Methionine Residues by Peroxides in Proteins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Oxidation%20of%20Methionine%20Residues%20by%20Peroxides%20in%20Proteins&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Chennamsetty,%20Naresh&rft.date=2015-04&rft.volume=104&rft.issue=4&rft.spage=1246&rft.epage=1255&rft.pages=1246-1255&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.24340&rft_dat=%3Cproquest_cross%3E3621921251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5330-5355336cde0c7c09345dce17022ff45bcabe81fd43688677e02fdcf465da3ad43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1662481962&rft_id=info:pmid/25641333&rfr_iscdi=true |