Loading…

New cetacean ΔR values for Arctic North America and their implications for marine-mammal-based palaeoenvironmental reconstructions

Radiocarbon-dated marine mammal remains from emergent Arctic coastlines have frequently been used to reconstruct Holocene sea-ice histories. The use of such reconstructions has hitherto been complicated by uncertain marine reservoir corrections precluding meaningful intercomparisons with data report...

Full description

Saved in:
Bibliographic Details
Published in:Quaternary science reviews 2014-05, Vol.91, p.218-241
Main Authors: Furze, Mark F.A., Pieńkowski, Anna J., Coulthard, Roy D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radiocarbon-dated marine mammal remains from emergent Arctic coastlines have frequently been used to reconstruct Holocene sea-ice histories. The use of such reconstructions has hitherto been complicated by uncertain marine reservoir corrections precluding meaningful intercomparisons with data reported in calibrated or sidereal years. Based on an exhaustive compilation of previously published marine mammal radiocarbon dates (both live-harvested materials and subfossils) from the Canadian Arctic Archipelago (CAA), new, statistically-derived δ13C and ΔR values are provided. Average δ13C values are: −16.1 ± 1.1‰ (bone collagen; n = 193) for bowhead (Balaena mysticetus); −14.4 ± 0.5‰ (n = 44; dentine) for beluga (Delphinapterus leucas); −14.8 ± 1.9‰ (teeth and tusks; n = 18) and −18.0 ± 4.7‰ (n = 9; bone collagen) for walrus (Odobenus rosmarus). ΔR values are 170 ± 95 14C years for bowhead (n = 23) and 240 ± 60 14C years for beluga (n = 12). Scarce data preclude calculation of meaningful, statistically robust walrus ΔR. Using the new ΔR values, an expanded and revised database of calibrated bowhead dates (651 dates; many used in previous CAA sea-ice reconstructions) shows pronounced late Quaternary spatio-temporal fluctuations in bone abundance. Though broadly resembling earlier bowhead subfossil frequency data, analysis of the new expanded database suggests early- and mid-Holocene increases in whale abundance to be of longer duration and lower amplitude than previously considered. A more even and persistent spread of infrequent low-abundance remains during “whale free” intervals is also seen. The dominance of three eastern regions (Prince Regent Inlet & Gulf of Boothia; Admiralty Inlet; Berlinguet Inlet/Bernier Bay) in the CAA data, collectively contributing up to 88% of all subfossil remains in the mid-Holocene, is notable. An analysis of calibrated regional sea-level index points suggests that severance of the Admiralty Inlet-Gulf of Boothia marine channel due to isostatically-driven regression may have played a significant role in enhanced whale mortality during this interval. Comparisons between the newly calibrated bowhead data and other regional sea-ice proxy data further highlight spatial and temporal discrepancies, potentially due to regional asynchronicities and variable sensitivities in proxy response to climate and oceanographic forcing. However, the limited number of deglacial–postglacial marine records continues to hamper extensive intercomparison
ISSN:0277-3791
1873-457X
DOI:10.1016/j.quascirev.2013.08.021