Loading…

Principles, techniques, and applications of biocatalyst immobilization for industrial application

Immobilization is one of the most effective and powerful tools used in industry, which has been studied and improved since the last century. Various immobilization techniques and support materials have been used on both laboratory and industrial scale. Each immobilization technique is applicable for...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2015-03, Vol.99 (5), p.2065-2082
Main Authors: Eş, Ismail, Vieira, José Daniel Gonçalves, Amaral, André Corrêa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immobilization is one of the most effective and powerful tools used in industry, which has been studied and improved since the last century. Various immobilization techniques and support materials have been used on both laboratory and industrial scale. Each immobilization technique is applicable for a specific production mostly depending on the cost and sensibility of process. Compared to free biocatalyst systems, immobilization techniques often offer better stability, increased activity and selectivity, higher resistance, improved separation and purification, reuse of enzymes, and consequently more efficient process. Recently, many reviews have been published about immobilization systems; however, most of them have focused on a specific application or not emphasized in details. This review focuses on most commonly used techniques in industry with many recent applications including using bioreactor systems for industrial production. It is also aimed to emphasize the advantages and disadvantages of the immobilization techniques and how these systems improve process productivity compared to non-immobilized systems.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-015-6390-y