Loading…

Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress

Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelle...

Full description

Saved in:
Bibliographic Details
Published in:Cell cycle (Georgetown, Tex.) Tex.), 2015, Vol.14 (6), p.867-879
Main Authors: Jiang, Li-Bo, Cao, Lu, Yin, Xiao-Fan, Yasen, Miersalijiang, Yishake, Mumingjiang, Dong, Jian, Li, Xi-Lei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 879
container_issue 6
container_start_page 867
container_title Cell cycle (Georgetown, Tex.)
container_volume 14
creator Jiang, Li-Bo
Cao, Lu
Yin, Xiao-Fan
Yasen, Miersalijiang
Yishake, Mumingjiang
Dong, Jian
Li, Xi-Lei
description Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.
doi_str_mv 10.1080/15384101.2015.1004946
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1665123426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1665123426</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-2bca35c4adc1b513aa0c695607af9db5ac05437099503d3feefc1c401468bc6e3</originalsourceid><addsrcrecordid>eNo1UNtKw0AUXASxtfoJyj5WJO3Z7CXNYyneUKlIfS4nm42JJNm4u6n0F_xqq61PMwzDzDCEXDCYMJjBlEk-EwzYJAYmdxKIVKgjMmRSskgAyAE59f4DIJ4lKTshg1jKFHjCh-R7rkO1wVDZltqCYh9sV-L7lm4qpAscx9dXUW460-amDXT-_PI4bVbLV9phKL9wS6uWOgy0tcHq0roca6pNXXtaeYp_tK_RUcyxC_uWfhflaLntjLO-saHS1AdnvD8jxwXW3pwfcETebm9Wi_voaXn3sJg_RR2LVYjiTCOXWmCuWSYZRwStUqkgwSLNM4kapOAJpKkEnvPCmEIzLYAJNcu0MnxExvvcztnP3viwbir_uxRbY3u_ZkpJFnMRq5318mDts8bk685VDbrt-v8__gPosnLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1665123426</pqid></control><display><type>article</type><title>Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress</title><source>Taylor and Francis Science and Technology Collection</source><source>PubMed Central</source><creator>Jiang, Li-Bo ; Cao, Lu ; Yin, Xiao-Fan ; Yasen, Miersalijiang ; Yishake, Mumingjiang ; Dong, Jian ; Li, Xi-Lei</creator><creatorcontrib>Jiang, Li-Bo ; Cao, Lu ; Yin, Xiao-Fan ; Yasen, Miersalijiang ; Yishake, Mumingjiang ; Dong, Jian ; Li, Xi-Lei</creatorcontrib><description>Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.</description><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.1080/15384101.2015.1004946</identifier><identifier>PMID: 25590373</identifier><language>eng</language><publisher>United States</publisher><subject>Adaptation, Physiological ; AMP-Activated Protein Kinases - metabolism ; Animals ; Apoptosis ; Autophagy ; Autophagy-Related Protein 5 ; Blotting, Western ; Calcium - metabolism ; Fluorescent Antibody Technique ; Gene Silencing ; Heat-Shock Proteins - metabolism ; Intracellular Space - metabolism ; Models, Biological ; Notochord - cytology ; Osmotic Pressure ; Phagosomes - metabolism ; Phagosomes - ultrastructure ; Proteins - metabolism ; Rats, Sprague-Dawley ; RNA, Small Interfering - metabolism ; Sequestosome-1 Protein ; Signal Transduction ; Staining and Labeling ; Stress, Physiological ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Cell cycle (Georgetown, Tex.), 2015, Vol.14 (6), p.867-879</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25590373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Li-Bo</creatorcontrib><creatorcontrib>Cao, Lu</creatorcontrib><creatorcontrib>Yin, Xiao-Fan</creatorcontrib><creatorcontrib>Yasen, Miersalijiang</creatorcontrib><creatorcontrib>Yishake, Mumingjiang</creatorcontrib><creatorcontrib>Dong, Jian</creatorcontrib><creatorcontrib>Li, Xi-Lei</creatorcontrib><title>Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.</description><subject>Adaptation, Physiological</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 5</subject><subject>Blotting, Western</subject><subject>Calcium - metabolism</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene Silencing</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Intracellular Space - metabolism</subject><subject>Models, Biological</subject><subject>Notochord - cytology</subject><subject>Osmotic Pressure</subject><subject>Phagosomes - metabolism</subject><subject>Phagosomes - ultrastructure</subject><subject>Proteins - metabolism</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sequestosome-1 Protein</subject><subject>Signal Transduction</subject><subject>Staining and Labeling</subject><subject>Stress, Physiological</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1UNtKw0AUXASxtfoJyj5WJO3Z7CXNYyneUKlIfS4nm42JJNm4u6n0F_xqq61PMwzDzDCEXDCYMJjBlEk-EwzYJAYmdxKIVKgjMmRSskgAyAE59f4DIJ4lKTshg1jKFHjCh-R7rkO1wVDZltqCYh9sV-L7lm4qpAscx9dXUW460-amDXT-_PI4bVbLV9phKL9wS6uWOgy0tcHq0roca6pNXXtaeYp_tK_RUcyxC_uWfhflaLntjLO-saHS1AdnvD8jxwXW3pwfcETebm9Wi_voaXn3sJg_RR2LVYjiTCOXWmCuWSYZRwStUqkgwSLNM4kapOAJpKkEnvPCmEIzLYAJNcu0MnxExvvcztnP3viwbir_uxRbY3u_ZkpJFnMRq5318mDts8bk685VDbrt-v8__gPosnLQ</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Jiang, Li-Bo</creator><creator>Cao, Lu</creator><creator>Yin, Xiao-Fan</creator><creator>Yasen, Miersalijiang</creator><creator>Yishake, Mumingjiang</creator><creator>Dong, Jian</creator><creator>Li, Xi-Lei</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2015</creationdate><title>Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress</title><author>Jiang, Li-Bo ; Cao, Lu ; Yin, Xiao-Fan ; Yasen, Miersalijiang ; Yishake, Mumingjiang ; Dong, Jian ; Li, Xi-Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-2bca35c4adc1b513aa0c695607af9db5ac05437099503d3feefc1c401468bc6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation, Physiological</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 5</topic><topic>Blotting, Western</topic><topic>Calcium - metabolism</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene Silencing</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Intracellular Space - metabolism</topic><topic>Models, Biological</topic><topic>Notochord - cytology</topic><topic>Osmotic Pressure</topic><topic>Phagosomes - metabolism</topic><topic>Phagosomes - ultrastructure</topic><topic>Proteins - metabolism</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sequestosome-1 Protein</topic><topic>Signal Transduction</topic><topic>Staining and Labeling</topic><topic>Stress, Physiological</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Li-Bo</creatorcontrib><creatorcontrib>Cao, Lu</creatorcontrib><creatorcontrib>Yin, Xiao-Fan</creatorcontrib><creatorcontrib>Yasen, Miersalijiang</creatorcontrib><creatorcontrib>Yishake, Mumingjiang</creatorcontrib><creatorcontrib>Dong, Jian</creatorcontrib><creatorcontrib>Li, Xi-Lei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Li-Bo</au><au>Cao, Lu</au><au>Yin, Xiao-Fan</au><au>Yasen, Miersalijiang</au><au>Yishake, Mumingjiang</au><au>Dong, Jian</au><au>Li, Xi-Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2015</date><risdate>2015</risdate><volume>14</volume><issue>6</issue><spage>867</spage><epage>879</epage><pages>867-879</pages><eissn>1551-4005</eissn><abstract>Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.</abstract><cop>United States</cop><pmid>25590373</pmid><doi>10.1080/15384101.2015.1004946</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1551-4005
ispartof Cell cycle (Georgetown, Tex.), 2015, Vol.14 (6), p.867-879
issn 1551-4005
language eng
recordid cdi_proquest_miscellaneous_1665123426
source Taylor and Francis Science and Technology Collection; PubMed Central
subjects Adaptation, Physiological
AMP-Activated Protein Kinases - metabolism
Animals
Apoptosis
Autophagy
Autophagy-Related Protein 5
Blotting, Western
Calcium - metabolism
Fluorescent Antibody Technique
Gene Silencing
Heat-Shock Proteins - metabolism
Intracellular Space - metabolism
Models, Biological
Notochord - cytology
Osmotic Pressure
Phagosomes - metabolism
Phagosomes - ultrastructure
Proteins - metabolism
Rats, Sprague-Dawley
RNA, Small Interfering - metabolism
Sequestosome-1 Protein
Signal Transduction
Staining and Labeling
Stress, Physiological
TOR Serine-Threonine Kinases - metabolism
title Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20autophagy%20via%20Ca(2+)-dependent%20AMPK/mTOR%20pathway%20in%20rat%20notochordal%20cells%20is%20a%20cellular%20adaptation%20under%20hyperosmotic%20stress&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Jiang,%20Li-Bo&rft.date=2015&rft.volume=14&rft.issue=6&rft.spage=867&rft.epage=879&rft.pages=867-879&rft.eissn=1551-4005&rft_id=info:doi/10.1080/15384101.2015.1004946&rft_dat=%3Cproquest_pubme%3E1665123426%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p126t-2bca35c4adc1b513aa0c695607af9db5ac05437099503d3feefc1c401468bc6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1665123426&rft_id=info:pmid/25590373&rfr_iscdi=true