Loading…

Aberrant Cerebellar Development of Transgenic Mice Expressing Dominant-Negative Thyroid Hormone Receptor in Cerebellar Purkinje Cells

To study the role of the thyroid hormone (TH) in cerebellar development, we generated transgenic mice expressing a dominant-negative TH receptor (TR) in cerebellar Purkinje cells. A mutant human TRβ1 (G345R), which binds to the TH-response element but cannot bind to T3, was subcloned into exon 4 of...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2015-04, Vol.156 (4), p.1565-1576
Main Authors: Yu, Lu, Iwasaki, Toshiharu, Xu, Ming, Lesmana, Ronny, Xiong, Yu, Shimokawa, Noriaki, Chin, William W, Koibuchi, Noriyuki
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To study the role of the thyroid hormone (TH) in cerebellar development, we generated transgenic mice expressing a dominant-negative TH receptor (TR) in cerebellar Purkinje cells. A mutant human TRβ1 (G345R), which binds to the TH-response element but cannot bind to T3, was subcloned into exon 4 of the full-length L7/Pcp-2 gene, which is specifically expressed in Purkinje and retinal rod bipolar cells. The transgene was specifically expressed in Purkinje cells in the postnatal cerebellum. Purkinje cell dendrite arborization was significantly delayed in the transgenic mice. Surprisingly, granule cell migration was also significantly delayed. In the primary cerebellar culture, TH-induced Purkinje cell dendrite arborization was also suppressed. In quantitative real-time RT-PCR analysis, the expression levels of several TH-responsive genes were altered. The expression levels of inositol trisphosphate receptor type 1 and retinoic acid receptor-related orphan receptorα mRNAs, which are mainly expressed in Purkinje cells, and brain-derived neurotrophic factor mRNA, which is expressed in both Purkinje and granule cells, were significantly decreased. The expression levels of neurotrophin-3 and hairless mRNAs, which are mainly expressed in granule cells, and myelin basic protein mRNA, which is mainly expressed in oligodendrocytes, were also decreased. The motor coordination of transgenic mice was significantly disrupted. These results indicate that TH action through its binding to TR in Purkinje cells is required for the normal cerebellar development. TH action through TR in Purkinje cells is also important for the development of other subsets of cerebellar cells such as granule cells and oligodendrocytes.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2014-1079