Loading…
Phase-coherent digital communications for underwater acoustic channels
High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equaliza...
Saved in:
Published in: | IEEE journal of oceanic engineering 1994-01, Vol.19 (1), p.100-111 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483 |
container_end_page | 111 |
container_issue | 1 |
container_start_page | 100 |
container_title | IEEE journal of oceanic engineering |
container_volume | 19 |
creator | Stojanovic, M. Catipovic, J.A. Proakis, J.G. |
description | High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation.< > |
doi_str_mv | 10.1109/48.289455 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16660641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>289455</ieee_id><sourcerecordid>28521234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK4evHrqQQQPXZPmo8lRFr9gQQ96LtN04ka66Zq0iP_eSpe97mkG5pmHl5eQS0YXjFFzJ_Si0EZIeURmTEqdM2XYMZlRrkRuqDSn5CylL0qZEKWZkce3NSTMbbfGiKHPGv_pe2gz2202Q_AWet-FlLkuZkNoMP5AjzED2w2p9zazawgB23ROThy0CS92c04-Hh_el8_56vXpZXm_yi1Xus-VddTVpaK04Q6kKXTtLCilpGoQDfKagiq0A-HGRZnaYVOqkhtnwDmh-ZzcTN5t7L4HTH218cli20LAMVJVGMFFKehhUMuCFVwcBNmYjirBRvB2Am3sUoroqm30G4i_FaPVf_eV0NXU_che76SQLLQuQrA-7R9GG1Ocj9jVhHlE3F93jj8bB4xG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16660641</pqid></control><display><type>article</type><title>Phase-coherent digital communications for underwater acoustic channels</title><source>IEEE Xplore (Online service)</source><creator>Stojanovic, M. ; Catipovic, J.A. ; Proakis, J.G.</creator><creatorcontrib>Stojanovic, M. ; Catipovic, J.A. ; Proakis, J.G.</creatorcontrib><description>High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation.< ></description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/48.289455</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithm ; Decision feedback equalizers ; Delay ; Digital communication ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluctuations ; Intersymbol interference ; Least squares methods ; Marine ; Marine optics and underwater sound ; Oceans ; Physics of the oceans ; Underwater acoustics ; Underwater communication ; Underwater sound</subject><ispartof>IEEE journal of oceanic engineering, 1994-01, Vol.19 (1), p.100-111</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483</citedby><cites>FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/289455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4131633$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stojanovic, M.</creatorcontrib><creatorcontrib>Catipovic, J.A.</creatorcontrib><creatorcontrib>Proakis, J.G.</creatorcontrib><title>Phase-coherent digital communications for underwater acoustic channels</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation.< ></description><subject>Adaptive algorithm</subject><subject>Decision feedback equalizers</subject><subject>Delay</subject><subject>Digital communication</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluctuations</subject><subject>Intersymbol interference</subject><subject>Least squares methods</subject><subject>Marine</subject><subject>Marine optics and underwater sound</subject><subject>Oceans</subject><subject>Physics of the oceans</subject><subject>Underwater acoustics</subject><subject>Underwater communication</subject><subject>Underwater sound</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK4evHrqQQQPXZPmo8lRFr9gQQ96LtN04ka66Zq0iP_eSpe97mkG5pmHl5eQS0YXjFFzJ_Si0EZIeURmTEqdM2XYMZlRrkRuqDSn5CylL0qZEKWZkce3NSTMbbfGiKHPGv_pe2gz2202Q_AWet-FlLkuZkNoMP5AjzED2w2p9zazawgB23ROThy0CS92c04-Hh_el8_56vXpZXm_yi1Xus-VddTVpaK04Q6kKXTtLCilpGoQDfKagiq0A-HGRZnaYVOqkhtnwDmh-ZzcTN5t7L4HTH218cli20LAMVJVGMFFKehhUMuCFVwcBNmYjirBRvB2Am3sUoroqm30G4i_FaPVf_eV0NXU_che76SQLLQuQrA-7R9GG1Ocj9jVhHlE3F93jj8bB4xG</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Stojanovic, M.</creator><creator>Catipovic, J.A.</creator><creator>Proakis, J.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>199401</creationdate><title>Phase-coherent digital communications for underwater acoustic channels</title><author>Stojanovic, M. ; Catipovic, J.A. ; Proakis, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adaptive algorithm</topic><topic>Decision feedback equalizers</topic><topic>Delay</topic><topic>Digital communication</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluctuations</topic><topic>Intersymbol interference</topic><topic>Least squares methods</topic><topic>Marine</topic><topic>Marine optics and underwater sound</topic><topic>Oceans</topic><topic>Physics of the oceans</topic><topic>Underwater acoustics</topic><topic>Underwater communication</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stojanovic, M.</creatorcontrib><creatorcontrib>Catipovic, J.A.</creatorcontrib><creatorcontrib>Proakis, J.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stojanovic, M.</au><au>Catipovic, J.A.</au><au>Proakis, J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-coherent digital communications for underwater acoustic channels</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>1994-01</date><risdate>1994</risdate><volume>19</volume><issue>1</issue><spage>100</spage><epage>111</epage><pages>100-111</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/48.289455</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9059 |
ispartof | IEEE journal of oceanic engineering, 1994-01, Vol.19 (1), p.100-111 |
issn | 0364-9059 1558-1691 |
language | eng |
recordid | cdi_proquest_miscellaneous_16660641 |
source | IEEE Xplore (Online service) |
subjects | Adaptive algorithm Decision feedback equalizers Delay Digital communication Earth, ocean, space Exact sciences and technology External geophysics Fluctuations Intersymbol interference Least squares methods Marine Marine optics and underwater sound Oceans Physics of the oceans Underwater acoustics Underwater communication Underwater sound |
title | Phase-coherent digital communications for underwater acoustic channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-coherent%20digital%20communications%20for%20underwater%20acoustic%20channels&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Stojanovic,%20M.&rft.date=1994-01&rft.volume=19&rft.issue=1&rft.spage=100&rft.epage=111&rft.pages=100-111&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/48.289455&rft_dat=%3Cproquest_cross%3E28521234%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16660641&rft_id=info:pmid/&rft_ieee_id=289455&rfr_iscdi=true |