Loading…

Phase-coherent digital communications for underwater acoustic channels

High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equaliza...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of oceanic engineering 1994-01, Vol.19 (1), p.100-111
Main Authors: Stojanovic, M., Catipovic, J.A., Proakis, J.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483
cites cdi_FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483
container_end_page 111
container_issue 1
container_start_page 100
container_title IEEE journal of oceanic engineering
container_volume 19
creator Stojanovic, M.
Catipovic, J.A.
Proakis, J.G.
description High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation.< >
doi_str_mv 10.1109/48.289455
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16660641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>289455</ieee_id><sourcerecordid>28521234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK4evHrqQQQPXZPmo8lRFr9gQQ96LtN04ka66Zq0iP_eSpe97mkG5pmHl5eQS0YXjFFzJ_Si0EZIeURmTEqdM2XYMZlRrkRuqDSn5CylL0qZEKWZkce3NSTMbbfGiKHPGv_pe2gz2202Q_AWet-FlLkuZkNoMP5AjzED2w2p9zazawgB23ROThy0CS92c04-Hh_el8_56vXpZXm_yi1Xus-VddTVpaK04Q6kKXTtLCilpGoQDfKagiq0A-HGRZnaYVOqkhtnwDmh-ZzcTN5t7L4HTH218cli20LAMVJVGMFFKehhUMuCFVwcBNmYjirBRvB2Am3sUoroqm30G4i_FaPVf_eV0NXU_che76SQLLQuQrA-7R9GG1Ocj9jVhHlE3F93jj8bB4xG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16660641</pqid></control><display><type>article</type><title>Phase-coherent digital communications for underwater acoustic channels</title><source>IEEE Xplore (Online service)</source><creator>Stojanovic, M. ; Catipovic, J.A. ; Proakis, J.G.</creator><creatorcontrib>Stojanovic, M. ; Catipovic, J.A. ; Proakis, J.G.</creatorcontrib><description>High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation.&lt; &gt;</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/48.289455</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithm ; Decision feedback equalizers ; Delay ; Digital communication ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluctuations ; Intersymbol interference ; Least squares methods ; Marine ; Marine optics and underwater sound ; Oceans ; Physics of the oceans ; Underwater acoustics ; Underwater communication ; Underwater sound</subject><ispartof>IEEE journal of oceanic engineering, 1994-01, Vol.19 (1), p.100-111</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483</citedby><cites>FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/289455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4131633$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stojanovic, M.</creatorcontrib><creatorcontrib>Catipovic, J.A.</creatorcontrib><creatorcontrib>Proakis, J.G.</creatorcontrib><title>Phase-coherent digital communications for underwater acoustic channels</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation.&lt; &gt;</description><subject>Adaptive algorithm</subject><subject>Decision feedback equalizers</subject><subject>Delay</subject><subject>Digital communication</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluctuations</subject><subject>Intersymbol interference</subject><subject>Least squares methods</subject><subject>Marine</subject><subject>Marine optics and underwater sound</subject><subject>Oceans</subject><subject>Physics of the oceans</subject><subject>Underwater acoustics</subject><subject>Underwater communication</subject><subject>Underwater sound</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK4evHrqQQQPXZPmo8lRFr9gQQ96LtN04ka66Zq0iP_eSpe97mkG5pmHl5eQS0YXjFFzJ_Si0EZIeURmTEqdM2XYMZlRrkRuqDSn5CylL0qZEKWZkce3NSTMbbfGiKHPGv_pe2gz2202Q_AWet-FlLkuZkNoMP5AjzED2w2p9zazawgB23ROThy0CS92c04-Hh_el8_56vXpZXm_yi1Xus-VddTVpaK04Q6kKXTtLCilpGoQDfKagiq0A-HGRZnaYVOqkhtnwDmh-ZzcTN5t7L4HTH218cli20LAMVJVGMFFKehhUMuCFVwcBNmYjirBRvB2Am3sUoroqm30G4i_FaPVf_eV0NXU_che76SQLLQuQrA-7R9GG1Ocj9jVhHlE3F93jj8bB4xG</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Stojanovic, M.</creator><creator>Catipovic, J.A.</creator><creator>Proakis, J.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>199401</creationdate><title>Phase-coherent digital communications for underwater acoustic channels</title><author>Stojanovic, M. ; Catipovic, J.A. ; Proakis, J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adaptive algorithm</topic><topic>Decision feedback equalizers</topic><topic>Delay</topic><topic>Digital communication</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluctuations</topic><topic>Intersymbol interference</topic><topic>Least squares methods</topic><topic>Marine</topic><topic>Marine optics and underwater sound</topic><topic>Oceans</topic><topic>Physics of the oceans</topic><topic>Underwater acoustics</topic><topic>Underwater communication</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stojanovic, M.</creatorcontrib><creatorcontrib>Catipovic, J.A.</creatorcontrib><creatorcontrib>Proakis, J.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stojanovic, M.</au><au>Catipovic, J.A.</au><au>Proakis, J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-coherent digital communications for underwater acoustic channels</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>1994-01</date><risdate>1994</risdate><volume>19</volume><issue>1</issue><spage>100</spage><epage>111</epage><pages>100-111</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/48.289455</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9059
ispartof IEEE journal of oceanic engineering, 1994-01, Vol.19 (1), p.100-111
issn 0364-9059
1558-1691
language eng
recordid cdi_proquest_miscellaneous_16660641
source IEEE Xplore (Online service)
subjects Adaptive algorithm
Decision feedback equalizers
Delay
Digital communication
Earth, ocean, space
Exact sciences and technology
External geophysics
Fluctuations
Intersymbol interference
Least squares methods
Marine
Marine optics and underwater sound
Oceans
Physics of the oceans
Underwater acoustics
Underwater communication
Underwater sound
title Phase-coherent digital communications for underwater acoustic channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-coherent%20digital%20communications%20for%20underwater%20acoustic%20channels&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Stojanovic,%20M.&rft.date=1994-01&rft.volume=19&rft.issue=1&rft.spage=100&rft.epage=111&rft.pages=100-111&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/48.289455&rft_dat=%3Cproquest_cross%3E28521234%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-6cf0fb7600d3fa5928bfca66656dee9e3b0a628fa4f0a669bfed76739f9aff483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16660641&rft_id=info:pmid/&rft_ieee_id=289455&rfr_iscdi=true