Loading…
Bone calcium/phosphorus ratio determination using dual energy X-ray method
Abstract Non-invasive dual energy methods have been used extensively on osteoporosis diagnosis estimating parameters, such as, Bone Mineral Density (BMD) and Bone Mineral Content (BMC). In this study, an X-ray dual energy method (XRDE) was developed for the estimation of the bone Calcium-to-Phosphor...
Saved in:
Published in: | Physica medica 2015-05, Vol.31 (3), p.307-313 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Non-invasive dual energy methods have been used extensively on osteoporosis diagnosis estimating parameters, such as, Bone Mineral Density (BMD) and Bone Mineral Content (BMC). In this study, an X-ray dual energy method (XRDE) was developed for the estimation of the bone Calcium-to-Phosphorous (Ca/P) mass ratio, as a bone quality index. The optimized irradiation parameters were assessed by performing analytical model simulations. X-ray tube output, filter material and thickness were used as input parameters. A single exposure technique, combined with K-edge filtering, was applied. The optimal X-ray spectra were selected according to the resulted precision and accuracy values. Experimental evaluation was performed on an XRDE system incorporating a Cadmium Telluride (CdTe) photon counting detector and three bone phantoms with different nominal mass Ca/P ratios. Additionally, the phantoms’ mass Ca/P ratios were validated with energy-dispersive X-ray spectroscopy (EDX). Simulation results showed that the optimum filter atomic number (Z) ranges between 57 and 70. The optimum spectrum was obtained at 100 kVp, filtered with Cerium (Ce), with a surface density of 0.88 g/cm2 . All Ca/P ratio measurements were found to be accurate to within 1.6% of the nominal values, while the precision ranged between 0.91 and 1.37%. The accuracy and precision values of the proposed non-invasive method contributes to the assessment of the bone quality state through the mass Ca/P ratio determination. |
---|---|
ISSN: | 1120-1797 1724-191X |
DOI: | 10.1016/j.ejmp.2015.01.019 |